Implementation of various semantic segmentation models in tensorflow & keras including popular datasets
Project description
TF Semantic Segmentation
Quick Start
See GETTING_STARTED, or the Colab Notebook.
Learn more at our documentation. See upcoming features on our roadmap.
Features
- Distributed Training on Multiple GPUs
- Hyper Parameter Optimization using WandB
- WandB Integration
- Easily create TFRecord from Directory
- Tensorboard visualizations
- Ensemble inference
Datasets
- Ade20k
- Camvid
- Cityscapes
- MappingChallenge
- MotsChallenge
- Coco
- PascalVoc2012
- Taco
- Shapes (randomly creating triangles, rectangles and circles)
- Toy (Overlaying TinyImageNet with MNIST)
- ISIC2018
- CVC-ClinicDB
Models
- Unet
- Erfnet
- MultiResUnet
- PSP (experimental)
- FCN (experimental)
- NestedUnet (Unet++) (experimental)
- U2Net / U2NetP (experimental)
- SatelliteUnet
- MobilenetUnet (unet with mobilenet encoder pre-trained on imagenet)
- InceptionResnetV2Unet (unet with inception-resnet v2 encoder pre-trained on imagenet)
- ResnetUnet (unet with resnet50 encoder pre-trained on imagenet)
- AttentionUnet
Losses
- Catagorical Crossentropy
- Binary Crossentropy
- Crossentropy + SSIM
- Dice
- Crossentropy + Dice
- Tversky
- Focal
- Focal + Tversky
Activations
- mish
- swish
- relu6
Optimizers
- Ranger
- RAdam
Normalization
- Instance Norm
- Batch Norm
On the fly Augmentations
- flip left/right
- flip up/down
- rot 180
- color
Getting Started
Requirements
sudo apt-get install libsm6 libxext6 libxrender-dev libyaml-dev libpython3-dev
Tensorflow (2.x) & Tensorflow Addons (optional)
pip install tensorflow-gpu==2.4.0 --upgrade
pip install tensorflow-addons==0.12.0 --upgrade
Installation
pip install tf-semantic-segmentation
Run tensorboard
- Hint: To see train/test/val images you have to start tensorboard like this
tensorboard --logdir=logs/ --reload_multifile=true
Train on inbuild datasets (generator)
python -m tf_semantic_segmentation.bin.train -ds 'tacobinary' -bs 8 -e 100 \
-logdir 'logs/taco-binary-test' -o 'adam' -lr 5e-3 --size 256,256 \
-l 'binary_crossentropy' -fa 'sigmoid' \
--train_on_generator --gpus='0' \
--tensorboard_train_images --tensorboard_val_images
Create a tfrecord from a dataset
# create a tfrecord from the toy dataset and resize to 128x128
tf-semantic-segmentation-tfrecord-writer -d 'toy' -c /hdd/datasets/ -s '128,128'
Train using a fixed record path
python -m tf_semantic_segmentation.bin.train --record_dir=records/cityscapes-512x256-rgb/ \
-bs 4 -e 100 -logdir 'logs/cityscapes-bs8-e100-512x256' -o 'adam' -lr 1e-4 -l 'categorical_crossentropy' \
-fa 'softmax' -bufsize 50 --metrics='iou_score,f1_score' -m 'erfnet' --gpus='0' -a 'mish' \
--tensorboard_train_images --tensorboard_val_images
Multi GPU training
python -m tf_semantic_segmentation.bin.train --record_dir=records/cityscapes-512x256-rgb/ \
-bs 4 -e 100 -logdir 'logs/cityscapes-bs8-e100-512x256' -o 'adam' -lr 1e-4 -l 'categorical_crossentropy' \
-fa 'softmax' -bufsize 50 --metrics='iou_score,f1_score' -m 'erfnet' --gpus='0,1,2,3' -a 'mish'
Using Code
from tf_semantic_segmentation.bin.train import train_test_model, get_args
# get the default args
args = get_args({})
# change some parameters
# !rm -r logs/
args.model = 'erfnet'
# args['color_mode'] = 0
args.batch_size = 8
args.size = [128, 128] # resize input dataset to this size
args.epochs = 10
args.learning_rate = 1e-4
args.optimizer = 'adam' # ['adam', 'radam', 'ranger']
args.loss = 'dice'
args.logdir = 'logs'
args.record_dir = "datasets/shapes/records"
args.final_activation = 'softmax'
# train and test
results, model = train_test_model(args)
Models
- Erfnet
- Unet
from tf_semantic_segmentation import models
# print all available models
print(list(modes.models_by_name.keys()))
# returns a model (without the final activation function)
model = models.get_model_by_name('erfnet', {"input_shape": (128, 128, 3), "num_classes": 5})
# call models directly
model = models.erfnet(input_shape=(128, 128), num_classes=5)
Use your own dataset
- Accepted file types are: jpg(jpeg) and png
If you already have a train/test/val split then use the following data structure:
dataset/
labels.txt
test/
images/
masks/
train/
images/
masks/
val/
images/
masks/
or use
dataset/
labels.txt
images/
masks/
The labels.txt should contain a list of labels separated by newline [/n]. For instance it looks like this:
background
car
pedestrian
- To create a tfrecord using the original image size and color use the script like this:
INPUT_DIR = ...
tf-semantic-segmentation-tfrecord-writer -dir $INPUT_DIR -r $INPUT_DIR/records
There are the following addition arguments:
- -s [--size] '$width,$height' (f.e. "512,512")
- -rm [--resize_method] ('resize', 'resize_with_pad', 'resize_with_crop_or_pad)
- cm [--color_mode] (0=RGB, 1=GRAY, 2=NONE (default))
Datasets
from tf_semantic_sementation.datasets import get_dataset by name, datasets_by_name, DataType, get_cache_dir
# print availiable dataset names
print(list(datasets_by_name.keys()))
# get the binary (waste or not) dataset
data_dir = '/hdd/data/'
name = 'tacobinary'
cache_dir = get_cache_dir(data_dir, name.lower())
ds = get_dataset_by_name(name, cache_dir)
# print labels and classes
print(ds.labels)
print(ds.num_classes)
# print number of training examples
print(ds.num_examples(DataType.TRAIN))
# or simply print the summary
ds.summary()
Debug datasets
python -m tf_semantic_segmentation.debug.dataset_vis -d ade20k
TFRecords
This library simplicifies the process of creating a tfrecord dataset for faster training.
Write tfrecords:
from tf_semantic_segmentation.datasets import TFWriter
ds = ...
writer = TFWriter(record_dir)
writer.write(ds)
writer.validate(ds)
or use simple with this script (will be save with size 128 x 128 (width x height)):
tf-semantic-segmentation-tfrecord-writer -d 'toy' -c /hdd/datasets/ -s '128,128'
Analyse already written tfrecord (with mean)
python -m tf_semantic_segmentation.bin.tfrecord_analyser -r records/ --mean
Docker
docker build -t tf_semantic_segmentation -f docker/Dockerfile ./
or pull the latest release
docker pull baudcode/tf_semantic_segmentation:latest
Prediction
pip install matplotlib
Using Code
from tensorflow.keras.models import load_model
import numpy as np
from tf_semantic_segmentation.processing import dataset
from tf_semantic_segmentation.visualizations import show, masks
model = load_model('logs/model-best.h5', compile=False)
# model parameters
size = tuple(model.input.shape[1:3])
depth = model.input.shape[-1]
color_mode = dataset.ColorMode.GRAY if depth == 1 else dataset.ColorMode.RGB
# define an image
image = np.zeros((256, 256, 3), np.uint8)
# preprocessing
image = image.astype(np.float32) / 255.
image, _ = dataset.resize_and_change_color(image, None, size, color_mode, resize_method='resize')
image_batch = np.expand_dims(image, axis=0)
# predict (returns probabilities)
p = model.predict(image_batch)
# draw segmentation map
num_classes = p.shape[-1] if p.shape[-1] > 1 else 2
predictions_rgb = masks.get_colored_segmentation_mask(p, num_classes, images=image_batch, binary_threshold=0.5)
# show images using matplotlib
show.show_images([predictions_rgb[0], image_batch[0]])
Using scripts
- On image
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -i image.png
- On TFRecord (data type 'val' is default)
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -r records/camvid/
- On TFRecord (with export to directory)
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -r records/cubbinary/ -o out/ -rm 'resize_with_pad'
- On Video
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -v video.mp4
- On Video (with export to out/p-video.mp4)
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -v video.mp4 -o out/
Prediction using Tensorflow Model Server
- Installation
# install
echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
sudo apt-get update && apt-get install tensorflow-model-server
- Start Model Server
### using a single model
tensorflow_model_server --rest_api_port=8501 --model_base_path=/home/user/models/mymodel/saved_model
### or using an ensamble of multiple models
# helper to write the ensamble config yaml file (models/ contains multiple logdirs/, logdir must contain the name 'unet')
python -m tf_semantic_segmentation.bin.model_server_config_writer -d models/ -c 'unet'
# start model server with written models.yaml
tensorflow_model_server --model_config_file=models.yaml --rest_api_port=8501
Compare models and ensemnble
python -m tf_semantic_segmentation.evaluation.compare_models -i logs/ -c 'taco' -data /hdd/datasets/ -d 'tacobinary'
Parameters:
- -i (directory containing models)
- -c (model name (directory name) must contain this value)
- -data (data directory)
- -d (dataset name)
Use --help to get more help
Using Code
from tf_semantic_segmentation.serving import predict, predict_on_batch, ensamble_prediction, get_models_from_directory
from tf_semantic_segmentation.processing.dataset import resize_and_change_color
image = np.zeros((128, 128, 3))
image_size = (256, 256)
color_mode = 0 # 0=RGB, 1=GRAY
resize_method = 'resize'
scale_mask = False # only scale mask when model output is scaled using sigmoid activation
num_classes = 3
# preprocess image
image = image.astype(np.float32) / 255.
image, _ = resize_and_change_color(image, None, image_size, color_mode, resize_method='resize')
# prediction on 1 image
p = predict(image.numpy(), host='localhost', port=8501, input_name='input_1', model_name='0')
#############################################################################################################
# if the image size should not match, the color mode does not match or the model_name does not match
# you'll most likely get a `400 Client Error: Bad Request for url: http://localhost:8501/v1/models/0:predict`
# hint: if you only started 1 model try using model_name 'default'
#############################################################################################################
# prediction on batch (for faster prediction of multiple images)
p = predict_on_batch([image], host='localhost', port=8501, input_name='input_1', model_name='0')
# ensamble prediction (average the predictions of multiple models)
# either specify models like this:
models = [
{
"name": "0",
"path": "/home/user/models/mymodel/saved_model/",
"version": 0, # optional
"input_name": "input_1"
},
{
"name": "1",
"path": "/home/user/models/mymodel2/saved_model/",
"input_name": "input_1"
}
]
# or load from models in directory (models/) that contain the name 'unet'
models = get_models_from_directory('models/', contains='unet')
# returns the ensamble and all predictions made
ensamble, predictions = ensamble_prediction(models, image.numpy(), host='localhost', port=8501)
TFLite support
Convert the model
python -m tf_semantic_segmentation.bin.convert_tflite -i logs/mymodel/saved_model/0/ -o model.tflite
Test inference on the model
python -m tf_semantic_segmentation.debug.tflite_test -m model.tflite -i Harris_Sparrow_0001_116398.jpg
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tf_semantic_segmentation-0.3.1.tar.gz
.
File metadata
- Download URL: tf_semantic_segmentation-0.3.1.tar.gz
- Upload date:
- Size: 112.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73150e7b9b3c87fe28490e404466d69b5dc4b3f195c8f45c69fc4a592f82edfd |
|
MD5 | 6ac801b4eb4dd00e934fe83c36ac3e7e |
|
BLAKE2b-256 | 636c646d3fbcd2edb6ad15b3ae38d9157b9fe67439b979ef055934f701e464b9 |
File details
Details for the file tf_semantic_segmentation-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: tf_semantic_segmentation-0.3.1-py3-none-any.whl
- Upload date:
- Size: 172.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de3762fdd1e7f2d49055247f2e27433d0aea457586a19a17d502ac01491f6ab6 |
|
MD5 | d9c48a72bc007e2f838b52e4727c1844 |
|
BLAKE2b-256 | c0ae3782fc4f08e45bc06c3ae33f5000ef58254da55dfb6631802051245d2acd |