Skip to main content

Implementation of various semantic segmentation models in tensorflow & keras including popular datasets

Project description

TF Semantic Segmentation

Build Status PyPI Status Badge codecov Open in Colab Documentation Status

Quick Start

See GETTING_STARTED, or the Colab Notebook.

Learn more at our documentation. See upcoming features on our roadmap.

Features

  • Distributed Training on Multiple GPUs
  • Hyper Parameter Optimization using WandB
  • WandB Integration
  • Easily create TFRecord from Directory
  • Tensorboard visualizations
  • Ensemble inference

Datasets

  • Ade20k
  • Camvid
  • Cityscapes
  • MappingChallenge
  • MotsChallenge
  • Coco
  • PascalVoc2012
  • Taco
  • Shapes (randomly creating triangles, rectangles and circles)
  • Toy (Overlaying TinyImageNet with MNIST)
  • ISIC2018
  • CVC-ClinicDB

Models

  • Unet
  • Erfnet
  • MultiResUnet
  • PSP (experimental)
  • FCN (experimental)
  • NestedUnet (Unet++) (experimental)
  • U2Net / U2NetP (experimental)
  • SatelliteUnet
  • MobilenetUnet (unet with mobilenet encoder pre-trained on imagenet)
  • InceptionResnetV2Unet (unet with inception-resnet v2 encoder pre-trained on imagenet)
  • ResnetUnet (unet with resnet50 encoder pre-trained on imagenet)
  • AttentionUnet

Losses

  • Catagorical Crossentropy
  • Binary Crossentropy
  • Crossentropy + SSIM
  • Dice
  • Crossentropy + Dice
  • Tversky
  • Focal
  • Focal + Tversky

Activations

  • mish
  • swish
  • relu6

Optimizers

  • Ranger
  • RAdam

Normalization

  • Instance Norm
  • Batch Norm

On the fly Augmentations

  • flip left/right
  • flip up/down
  • rot 180
  • color

Getting Started

Requirements

sudo apt-get install libsm6 libxext6 libxrender-dev libyaml-dev libpython3-dev

Tensorflow (2.x) & Tensorflow Addons (optional)

pip install tensorflow-gpu==2.4.0 --upgrade
pip install tensorflow-addons==0.12.0 --upgrade

Installation

pip install tf-semantic-segmentation

Run tensorboard

  • Hint: To see train/test/val images you have to start tensorboard like this
tensorboard --logdir=logs/ --reload_multifile=true

Train on inbuild datasets (generator)

python -m tf_semantic_segmentation.bin.train -ds 'tacobinary' -bs 8 -e 100 \
    -logdir 'logs/taco-binary-test' -o 'adam' -lr 5e-3 --size 256,256 \
    -l 'binary_crossentropy' -fa 'sigmoid' \
    --train_on_generator --gpus='0' \
    --tensorboard_train_images --tensorboard_val_images

Create a tfrecord from a dataset

# create a tfrecord from the toy dataset and resize to 128x128
tf-semantic-segmentation-tfrecord-writer -d 'toy' -c /hdd/datasets/ -s '128,128'

Train using a fixed record path

python -m tf_semantic_segmentation.bin.train --record_dir=records/cityscapes-512x256-rgb/ \
    -bs 4 -e 100 -logdir 'logs/cityscapes-bs8-e100-512x256' -o 'adam' -lr 1e-4 -l 'categorical_crossentropy' \
    -fa 'softmax' -bufsize 50 --metrics='iou_score,f1_score' -m 'erfnet' --gpus='0' -a 'mish' \
    --tensorboard_train_images --tensorboard_val_images

Multi GPU training

python -m tf_semantic_segmentation.bin.train --record_dir=records/cityscapes-512x256-rgb/ \
    -bs 4 -e 100 -logdir 'logs/cityscapes-bs8-e100-512x256' -o 'adam' -lr 1e-4 -l 'categorical_crossentropy' \
    -fa 'softmax' -bufsize 50 --metrics='iou_score,f1_score' -m 'erfnet' --gpus='0,1,2,3' -a 'mish'

Using Code

from tf_semantic_segmentation.bin.train import train_test_model, get_args

# get the default args
args = get_args({})

# change some parameters
# !rm -r logs/
args.model = 'erfnet'
# args['color_mode'] = 0
args.batch_size = 8
args.size = [128, 128] # resize input dataset to this size
args.epochs = 10
args.learning_rate = 1e-4
args.optimizer = 'adam' # ['adam', 'radam', 'ranger']
args.loss = 'dice'
args.logdir = 'logs'
args.record_dir = "datasets/shapes/records"
args.final_activation = 'softmax'

# train and test
results, model = train_test_model(args)

Models

  • Erfnet
  • Unet
from tf_semantic_segmentation import models

# print all available models
print(list(modes.models_by_name.keys()))

# returns a model (without the final activation function)
model = models.get_model_by_name('erfnet', {"input_shape": (128, 128, 3), "num_classes": 5})

# call models directly
model = models.erfnet(input_shape=(128, 128), num_classes=5)

Use your own dataset

  • Accepted file types are: jpg(jpeg) and png

If you already have a train/test/val split then use the following data structure:

dataset/
    labels.txt
    test/
        images/
        masks/
    train/
        images/
        masks/
    val/
        images/
        masks/

or use

dataset/
    labels.txt
    images/
    masks/

The labels.txt should contain a list of labels separated by newline [/n]. For instance it looks like this:

background
car
pedestrian
  • To create a tfrecord using the original image size and color use the script like this:
INPUT_DIR = ...
tf-semantic-segmentation-tfrecord-writer -dir $INPUT_DIR -r $INPUT_DIR/records

There are the following addition arguments:

  • -s [--size] '$width,$height' (f.e. "512,512")
  • -rm [--resize_method] ('resize', 'resize_with_pad', 'resize_with_crop_or_pad)
  • cm [--color_mode] (0=RGB, 1=GRAY, 2=NONE (default))

Datasets

from tf_semantic_sementation.datasets import get_dataset by name, datasets_by_name, DataType, get_cache_dir

# print availiable dataset names
print(list(datasets_by_name.keys()))

# get the binary (waste or not) dataset
data_dir = '/hdd/data/'
name = 'tacobinary'
cache_dir = get_cache_dir(data_dir, name.lower())
ds = get_dataset_by_name(name, cache_dir)

# print labels and classes
print(ds.labels)
print(ds.num_classes)

# print number of training examples
print(ds.num_examples(DataType.TRAIN))

# or simply print the summary
ds.summary()

Debug datasets

python -m tf_semantic_segmentation.debug.dataset_vis -d ade20k

TFRecords

This library simplicifies the process of creating a tfrecord dataset for faster training.

Write tfrecords:

from tf_semantic_segmentation.datasets import TFWriter
ds = ...
writer = TFWriter(record_dir)
writer.write(ds)
writer.validate(ds)

or use simple with this script (will be save with size 128 x 128 (width x height)):

tf-semantic-segmentation-tfrecord-writer -d 'toy' -c /hdd/datasets/ -s '128,128'

Analyse already written tfrecord (with mean)

python -m tf_semantic_segmentation.bin.tfrecord_analyser -r records/ --mean

Docker

docker build -t tf_semantic_segmentation -f docker/Dockerfile ./

or pull the latest release

docker pull baudcode/tf_semantic_segmentation:latest

Prediction

pip install matplotlib

Using Code

from tensorflow.keras.models import load_model
import numpy as np
from tf_semantic_segmentation.processing import dataset
from tf_semantic_segmentation.visualizations import show, masks


model = load_model('logs/model-best.h5', compile=False)

# model parameters
size = tuple(model.input.shape[1:3])
depth = model.input.shape[-1]
color_mode = dataset.ColorMode.GRAY if depth == 1 else dataset.ColorMode.RGB

# define an image
image = np.zeros((256, 256, 3), np.uint8)

# preprocessing
image = image.astype(np.float32) / 255.
image, _ = dataset.resize_and_change_color(image, None, size, color_mode, resize_method='resize')

image_batch = np.expand_dims(image, axis=0)

# predict (returns probabilities)
p = model.predict(image_batch)

# draw segmentation map
num_classes = p.shape[-1] if p.shape[-1] > 1 else 2
predictions_rgb = masks.get_colored_segmentation_mask(p, num_classes, images=image_batch, binary_threshold=0.5)

# show images using matplotlib
show.show_images([predictions_rgb[0], image_batch[0]])

Using scripts

  • On image
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5  -i image.png
  • On TFRecord (data type 'val' is default)
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -r records/camvid/
  • On TFRecord (with export to directory)
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -r records/cubbinary/ -o out/ -rm 'resize_with_pad'
  • On Video
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -v video.mp4
  • On Video (with export to out/p-video.mp4)
python -m tf_semantic_segmentation.evaluation.predict -m model-best.h5 -v video.mp4 -o out/

Prediction using Tensorflow Model Server

  • Installation
# install
echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
sudo apt-get update && apt-get install tensorflow-model-server
  • Start Model Server
### using a single model
tensorflow_model_server --rest_api_port=8501 --model_base_path=/home/user/models/mymodel/saved_model

### or using an ensamble of multiple models

# helper to write the ensamble config yaml file (models/ contains multiple logdirs/, logdir must contain the name 'unet')
python -m tf_semantic_segmentation.bin.model_server_config_writer -d models/ -c 'unet'
# start model server with written models.yaml
tensorflow_model_server --model_config_file=models.yaml --rest_api_port=8501

Compare models and ensemnble

python -m tf_semantic_segmentation.evaluation.compare_models -i logs/ -c 'taco' -data /hdd/datasets/ -d 'tacobinary'

Parameters:

  • -i (directory containing models)
  • -c (model name (directory name) must contain this value)
  • -data (data directory)
  • -d (dataset name)

Use --help to get more help

Using Code

from tf_semantic_segmentation.serving import predict, predict_on_batch, ensamble_prediction, get_models_from_directory
from tf_semantic_segmentation.processing.dataset import resize_and_change_color

image = np.zeros((128, 128, 3))
image_size = (256, 256)
color_mode = 0  # 0=RGB, 1=GRAY
resize_method = 'resize'
scale_mask = False # only scale mask when model output is scaled using sigmoid activation
num_classes = 3

# preprocess image
image = image.astype(np.float32) / 255.
image, _ = resize_and_change_color(image, None, image_size, color_mode, resize_method='resize')

# prediction on 1 image
p = predict(image.numpy(), host='localhost', port=8501, input_name='input_1', model_name='0')

#############################################################################################################
# if the image size should not match, the color mode does not match or the model_name does not match
# you'll most likely get a `400 Client Error: Bad Request for url: http://localhost:8501/v1/models/0:predict`
# hint: if you only started 1 model try using model_name 'default'
#############################################################################################################

# prediction on batch (for faster prediction of multiple images)
p = predict_on_batch([image], host='localhost', port=8501, input_name='input_1', model_name='0')

# ensamble prediction (average the predictions of multiple models)

# either specify models like this:
models = [
    {
        "name": "0",
        "path": "/home/user/models/mymodel/saved_model/",
        "version": 0, # optional
        "input_name": "input_1"
    },
    {
        "name": "1",
        "path": "/home/user/models/mymodel2/saved_model/",
        "input_name": "input_1"
    }
]


# or load from models in directory (models/) that contain the name 'unet'
models = get_models_from_directory('models/', contains='unet')

# returns the ensamble and all predictions made
ensamble, predictions = ensamble_prediction(models, image.numpy(), host='localhost', port=8501)

TFLite support

Convert the model

python -m tf_semantic_segmentation.bin.convert_tflite -i logs/mymodel/saved_model/0/ -o model.tflite

Test inference on the model

python -m tf_semantic_segmentation.debug.tflite_test -m model.tflite -i Harris_Sparrow_0001_116398.jpg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tf_semantic_segmentation-0.3.0.tar.gz (112.3 kB view hashes)

Uploaded Source

Built Distribution

tf_semantic_segmentation-0.3.0-py3-none-any.whl (172.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page