Skip to main content

YOLOv4 implementation with Tensorflow 2

Project description

tf-yolov4

PyPI version Upload Python Package

YOLOv4 implementation with Tensorflow 2.

Install

pip instal tf-yolov4

Example

Prediction

import numpy as np
import PIL.Image
import yolov4

# Default: num_classes=80
yo = yolov4.YOLOv4(num_classes=80)

# Default: weights_path=None
# num_classes=80 and weights_path=None: Pre-trained COCO model will be loaded.
# num_classes!=80 and weights_path=None: Pre-trained backbone and SPP model will be loaded.
# Otherwise: User-defined weight file will be loaded.
yo.load_weights(weights_path=None)

img = np.array(PIL.Image.open('./data/sf.jpg'))

# The image with predicted bounding-boxes is created if `debug=True`
boxes, classes, scores = yo.predict(img, debug=True)

output

Load Darknet weight

import yolov4

yo = yolov4.YOLOv4(num_classes=10)
yo.load_darknet_weights('/path/to/darknet_weight')

TODO

  • Prediction
  • Load Darknet weight file
  • Pre-trained model
  • Basic training function and Loss definition
  • Label-smoothed BCE loss
  • c-IoU loss
  • Training data augmentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tf-yolov4-1.0.4.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

tf_yolov4-1.0.4-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file tf-yolov4-1.0.4.tar.gz.

File metadata

  • Download URL: tf-yolov4-1.0.4.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for tf-yolov4-1.0.4.tar.gz
Algorithm Hash digest
SHA256 35d8035bc04349e65dff83d2208ebc2e7c5f26594a829fce8cd01995c68fbbcf
MD5 43ab873434b5ea731a9e6a6ffdaf2e21
BLAKE2b-256 157fd435462b8c54a26afc7e720d50886c48eb761487e1cadd36a2983061aebf

See more details on using hashes here.

File details

Details for the file tf_yolov4-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: tf_yolov4-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for tf_yolov4-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b0694fa134429e3b06e74bdff244b8d82ba9716a11fed71e6436c6a677a24036
MD5 01010386f53a47ab938af0a8e4d2d1c4
BLAKE2b-256 13067497758c412029d6f67b12beda3437259316fc1a11780705bafdbca7d771

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page