Skip to main content

An image augmentation library for tensorflow. Easy use with tf.data.Dataset

Project description

tfAugmentor

An image augmentation library for tensorflow. The libray is designed to be easily used with tf.data.Dataset. The augmentor accepts tf.data.Dataset object or a nested tuple of numpy array.

Augmentations

Original Flip Rotation Translation
original demo_flip demo_rotation demo_translation
Crop Elactic Deform
demo_crop demo_elastic
Gaussian Blur Contrast Gamma
demo_blur demo_contrast demo_gamma

Demo

Random Rotation Random Translation Random Crop
demo_ratation demo_translation demo_crop
Random Contrast Random Gamma Elastic Deform
demo_contrast demo_gamma demo_elastic

Installation

tfAugmentor is written in Python and can be easily installed via:

pip install tfAugmentor

Required packages:

  • tensorflow (developed under tf 2.4), should work with any 2.x version
  • numpy (numpy=1.20 may cause error of tf.meshgrid, use another version)

Quick Start

tfAugmentor is implemented to work seamlessly with tf.data. The tf.data.Dataset object can be directly processed by tfAugmentor.

To instantiate an Augmentor object, three arguments are required:

class Augmentor(object):
    def __init__(self, signature, image=[], label_map=[]):
		...
  • signature: to present the structure of the dataset
    • a nested tuple of string
    • a list/tuple of dictionary keys, if your dataset is in a dictionary form
  • image: list of string items in signature, which will be treated as normal images
  • label: list of string items in signature, which will be treated as segmentation masks

Note: only the items in 'image' and 'label' will be processed, others will remain untouched

A simple example

import tfAugmentor as tfaug

# new tfAugmentor object
aug = tfaug.Augmentor(signature=('image', ('mask1', 'mask2')), 
                      image=['image'], 
                      label=['mask1', 'mask2'])

# add augumentation operations
aug.flip_left_right(probability=0.5)
aug.rotate90(probability=0.5)
aug.elastic_deform(strength=2, scale=20, probability=1)

# assume we have three numpy arrays
X_image = ... # shape [batch, height, width, channel]
Y_mask1 = ... # shape [batch, height, width, 1]
Y_mask2 = ... # shape [batch, height, width, 1]

# create tf.data.Dataset object
tf_dataset = tf.data.Dataset.from_tensor_slices((X_image, (Y_mask1, Y_mask2))))
# do the actual augmentation
ds1 = aug(tf_dataset)

# or you can directly pass the numpy arrays, a tf.data.Dataset object will be returned 
ds2 = aug((X_image, (Y_mask1, Y_mask2))), keep_size=True)

If the data is passed as a python dictionary, the signature should be the list/tuple of keys. For example:

import tfAugmentor as tfaug

# new tfAugmentor object
aug = tfaug.Augmentor(signature=('image', 'mask1', 'mask2'), 
                      image=['image'], 
                      label=['mask1', 'mask2'])

# add augumentation operations
aug.flip_left_right(probability=0.5)
aug.rotate90(probability=0.5)
aug.elastic_deform(strength=2, scale=20, probability=1)

# assume we have three numpy arrays
X_image = ... # shape [batch, height, width, channel]
Y_mask1 = ... # shape [batch, height, width, 1]
Y_mask2 = ... # shape [batch, height, width, 1]

ds_dict = {'image': X_image,
           'mask1': Y_mask1,
           'mask2': Y_mask2}
# create tf.data.Dataset object
tf_dataset = tf.data.Dataset.from_tensor_slices(ds_dict)
# do the actual augmentation
ds1 = aug(tf_dataset)

# or directly pass the data
ds2 = aug(ds_dict)

Note: All added operations will be executed one by one, but you can create multiply tfAugmentor to realize parallel pipelines

A more complicated example

import tfAugmentor as tfaug

# since 'class' is neither in 'image' nor in 'label', it will not be processed 
aug1 = tfaug.Augmentor((('image_rgb', 'image_depth'), ('semantic_mask', 'class')), 
                       image=['image_rgb', 'image_depth'], 
                       label=['semantic_mask'])
aug2 = tfaug.Augmentor((('image_rgb', 'image_depth'), ('semantic_mask', 'class')), 
                       image=['image_rgb', 'image_depth'], 
                       label=['semantic_mask'])

# add different augumentation operations to aug1 and aug2 
aug1.flip_left_right(probability=0.5)
aug1.random_crop_resize(sacle_range=(0.7, 0.9), probability=0.5)
aug2.elastic_deform(strength=2, scale=20, probability=1)

# assume we have the 1000 data samples
X_rgb = ...  # shape [1000 x 512 x 512 x 3]
X_depth = ... # shape [1000 x 512 x 512 x 1]
Y_semantic_mask = ... # shape [1000 x 512 x 512 x 1]
Y_class = ... # shape [1000 x 1]

# create tf.data.Dataset object
ds_origin = tf.data.Dataset.from_tensor_slices(((X_rgb, X_depth), (Y_semantic_mask, Y_class))))
# do the actual augmentation
ds1 = aug1(ds_origin)
ds2 = aug2(ds_origin)
# combine them
ds = ds_origin.concatenate(ds1)
ds = ds.concatenate(ds1)

Main Features

The argument 'probability' controls the possibility of a certain augmentation taking place.

Mirroring

# flip the image left right  
aug.flip_left_right(probability=1)
# flip the image up down 
aug.flip_up_down(probability=1) 

Rotation

# rotate by 90 degree clockwise
a.rotate90(probability=1) 
# rotate by 180 degree clockwise
a.rotate180(probability=1)
# rotate by 270 degree clockwise 
a.rotate270(probability=1) 
# rotate by a certrain degree, Args: angle - scala, in degree
a.rotate(angle, probability=1) 
# randomly rotate the image
a.random_rotate(probability=1) 

Translation

# tranlate image, Args: offset - [x, y]
a.translate(offset, probability=1):
# randoms translate image 
a.random_translate(translation_range=[-100, 100], probability=1):

Crop and Resize

# randomly crop a sub-image and resize to the original image size
a.random_crop(scale_range=([0.5, 0.8], preserve_aspect_ratio=False, probability=1) 

Elastic Deformation

# performa elastic deformation
a.elastic_deform(scale=10, strength=200, probability=1)

Photometric Adjustment

# adjust image contrast randomly
a.random_contrast(contrast_range=[0.6, 1.4], probability=1)
# perform gamma correction with random gamma values
a.random_gamma(gamma_range=[0.5, 1.5], probability=1)

Noise

# blur the image with gaussian kernel
a.gaussian_blur(sigma=2, probability=1)

Caution

  • If .batch() of tf.data.Dataset is used before augmentation, please set drop_remainder=True. Oherwise, the batch_size will be set to None. The augmention of tfAgmentor requires the batch_size dimension

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfAugmentor-1.3.1.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

tfAugmentor-1.3.1-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file tfAugmentor-1.3.1.tar.gz.

File metadata

  • Download URL: tfAugmentor-1.3.1.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.10

File hashes

Hashes for tfAugmentor-1.3.1.tar.gz
Algorithm Hash digest
SHA256 3fb59cb66a3f71060bca12f55a85d2bc5c4cad40399d19fc90048878d5975781
MD5 e5c4c02eea6680bddcab38aac8f214df
BLAKE2b-256 fc38252b19855df4ce801f64898e55a44fee6cba1bc18e335ef89f274c2343e1

See more details on using hashes here.

File details

Details for the file tfAugmentor-1.3.1-py3-none-any.whl.

File metadata

  • Download URL: tfAugmentor-1.3.1-py3-none-any.whl
  • Upload date:
  • Size: 11.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.10

File hashes

Hashes for tfAugmentor-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fc21f5676417c94292c65c6e36c7de11b8109853e654c5a2708f693ff2bb139c
MD5 0a94556694f58cd18ccd8e350fc040c3
BLAKE2b-256 6f393331d724eb5d02984842086f99e724e969b51c517e6bfb4b6e53542d151e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page