Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-win_amd64.whl (898.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-macosx_10_13_x86_64.whl (592.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-win_amd64.whl (898.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-macosx_10_13_x86_64.whl (592.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-win_amd64.whl (898.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-macosx_10_13_x86_64.whl (592.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-win_amd64.whl (898.0 kB view details)

Uploaded CPython 3.5m Windows x86-64

tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-macosx_10_13_x86_64.whl (592.6 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 898.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d95ad7593e6b6534e68d6e6de2fb50249134d506b7bcc871ff5f012465f0e599
MD5 8d33fe842877f439bdb93f1ddb06343d
BLAKE2b-256 09fcdf643aab03eced3acc4a19e72d8c0ea1f0824384789ec6e9a8af24f7d68e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 99bade4bb6d6ad8f3118636b5c89a97166972646227e2f9e25be2a3cbf531fb5
MD5 ed1063b7d8d4201f8df5045f47858a75
BLAKE2b-256 26f2c9cace34f1452c994e326774b063948605b3e4f76ba8ed1d5292d56158bb

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 994d53952db3c300d7c087e0c3f8cc6bcfe4c879b66ce1a9b6d6970fc046c982
MD5 202f6dcfdbe03f3e02ad8da1dde4075a
BLAKE2b-256 a23ee02329e4ef54a84e556663e0241a09b65e789927c93d1a3d73d0863180b4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 898.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d51cd4ee377d441c6223cdd326e87f6504f8b9f7d9aea7afbbe072b536da5ec9
MD5 b493f1665fcfec1e666d4192a53079a8
BLAKE2b-256 aa55b388cecb0d8ee65a0f3063dfc5ade1c99371cc2430e07a1fa218b1effae3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3f5924766923893008f073b1fe2e7b849dcdc525bdb8424c7f66888a414b0f40
MD5 c46904eb80727e97cfe923e73d2f73ba
BLAKE2b-256 104453f142dac8ddbc8f1027aaa5eb67efc0f825d412f3c03d2fc25c8658c7f1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0e042732d57e4fdf24912fe4cdd08a9cb435ca2ed35d82fd93b6a45f856b398e
MD5 2b3c418fffc9644614fd92c461072999
BLAKE2b-256 1dbb375e75a58608c88bb4ecf0b6e3652a7197036373cdc7f8e0f8f31e5a07b5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 898.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4183fe725d2ffab8ed31dda3e5fbff9a19049ebab8cc152f6f99d4daf6e667fe
MD5 5191e4697e4323171fe7fefdb95b0bf1
BLAKE2b-256 e6012550513acbc7dc0ea0d19cac0e49b2ec61002352d333e2ebee4522e9da3c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 07b42ed43d0a1ee6478ef341ebf702e6337109c8d09e0e67910ad2a506a474ef
MD5 673e4cb90a4a0626eb37fa5a5ff318f3
BLAKE2b-256 0519f5acd1384837faba87869c8f267c3c948204e6b2bb637df2ef994fde4af3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5b8bf26c37613d9e7772b5c066c4ad0a02b28cb7fafb8996c88f59c264453856
MD5 2ba158a2114c6ce91883aaaa66f73e78
BLAKE2b-256 bfbefaf731bc7043fd995b52114a2ac6f69fa3fbfda865f70b76e2f04bbee0f8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 898.0 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 2c8875ec4803d069a4f59fb4cfaaa55c1a0a5f61ad60d80e017fbf49cdd1cccf
MD5 bad61de176cb425ad6f256c3ae6c34b6
BLAKE2b-256 cd139392cb38c07d994b25249328c7aa16bb247265fcc26736533e878ea89fc5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0e8bd0c6ca1929c85555fce7a363a38f3391d65a641a9f82c754b1f29b6709d
MD5 52d26698b15cd1329d89b696b5e35962
BLAKE2b-256 725be2048e2e335a9ee0819071bed1adca148a0da798a2900fdcecf53300ce60

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.11.0.dev20200605164017-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c50dcf894bdd7ffe87ec9cb3543de50a1c9af7c2617c1992d9c589c48f139aba
MD5 01c15ca9344043f6b34bd7c63311b14d
BLAKE2b-256 cf0436157b3910871537ffe1591f8653ecc3fc82ffa8008de3021c93c22bbc1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page