Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-win_amd64.whl (917.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-macosx_10_13_x86_64.whl (620.2 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-win_amd64.whl (917.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-macosx_10_13_x86_64.whl (620.2 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-win_amd64.whl (917.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-macosx_10_13_x86_64.whl (620.2 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-win_amd64.whl (917.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-macosx_10_13_x86_64.whl (620.2 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 917.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 455265e85c14c098bf261669f412d86655217a90fdf42a3f87cfb3e936b6190a
MD5 44df79c43c1084b803d41a19a1d4e82c
BLAKE2b-256 393a57c3001b0ea7577af430bdf753b2ffa189855a9cbe1d2a32138a5302508f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f8db02bccad031c2b8ba80d2e234fdc1d9d7c0d91393e48b067bd8e627d63f8
MD5 2b91fc4898a9aee01bb2212bd3a9772e
BLAKE2b-256 b7e4205d16d4c6d71214d825e5e4b8b15cc0a5614fa9814f4fbb5a6806af9565

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7a85cd6384c4d4b603bdd57eced78e1d1fb237707b25e51090f9ccdbed4de338
MD5 47bf464e22bb807d8373938b5182af0c
BLAKE2b-256 fc4d1532c8c8dd2b5272817f47fd362f0639bf2509b5cfb876a5fe801c7f34e6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 917.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0d65bf57ef01712cf38c6c3c5f04debacc92a2f93ea60e5549994f19b7f77909
MD5 f9bfd004ac9d23fc64e8efa4b95c3e37
BLAKE2b-256 ab09db2d5048f954fb596fe242330a3442040269f180c14abaf303a0e31519a1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 da7e8ee2a9c5bd5f46f0ad7c3ef4e4a8ce058a3d8dad5897b9a048a5d4549513
MD5 7503da1e1530935f669bbd7660812c50
BLAKE2b-256 6c787aae72c99a7e23df0ec741b13f596fe60da1b708d76f388bbb86355360e2

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fb4bca6089879db1c7659d8de6ca2ecea2160e1bea45d81a89f3b435cd00b771
MD5 9e935d3d07e7356fa9b835b4efb02097
BLAKE2b-256 e9317e4862d2f88cc18296d410e63df8e2f07dab21d7c281d9355ca98bfaa99c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 917.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 052682ba6bac477af8bf40170acda6e742297d9be49ac825aa3ceb60d5cab59b
MD5 7e0313b713b5a2afd6690128314555d0
BLAKE2b-256 95fe1c51a8bf8b32a9990b8f98ad3d34211c7f2f1c80d3eb9775611a94997fdd

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6df5b64d3ac3830386ab261059f74bce5c0837c4c8c43fe60aca583c0dc431f0
MD5 5180f91056220f20ab0f08d0397d979a
BLAKE2b-256 efc9a84d6b3b5c320cd2098a2a31ea0cee9c8fa72f9309591d9d462cb2d71f51

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b286aac968040f54711a37dc344cd0d8963cc6c9f6fba49012c4a33989571d43
MD5 a2ad351e6265c113eb4bd030091c2a90
BLAKE2b-256 2392b279b0c53afc9a995b6811e6634284a708e118bebf9283f7acf71eda8735

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 917.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6a03475614106bc648969b142c378b1bade013ca7fbd6ac5d0a29bcd97930cae
MD5 a981a94397420fc2ae807da671427399
BLAKE2b-256 d1686aa85d57951a017b241f558f3922ce67796b373291b3c52ae9c1d26f06f7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cce91c99c622c41b0d1a305f915d1d6131134b844138a882da24435f9c7876fc
MD5 26659883f198cee83eaf379f21627488
BLAKE2b-256 a00d03304ca8d376b09e4ada9caba82a505c153522f1fd63e865a069e931a064

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20200910220101-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f822af8dae0c163bff1ffc20248f0e8271ba95c912607a9d86fd830012a2664f
MD5 825bdd102fa54d6d279198deff322f50
BLAKE2b-256 905e26dcefc7e5cc847448f4354f484d87113957aeb52f25fbdae65018bca9a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page