Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-win_amd64.whl (926.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-macosx_10_13_x86_64.whl (629.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-win_amd64.whl (926.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-macosx_10_13_x86_64.whl (629.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-win_amd64.whl (926.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-macosx_10_13_x86_64.whl (629.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-win_amd64.whl (926.9 kB view details)

Uploaded CPython 3.5m Windows x86-64

tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-macosx_10_13_x86_64.whl (629.6 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 926.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4511c8d4c927c669fbf712e3ed30e4d78079830960491674dfda8eeb60ff4a77
MD5 6e430bc71f934556a615a0c6cf1bc53b
BLAKE2b-256 4fa160dc82e7979108e7032898942f313bb035e8007b4530e899a0dad45d43fb

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b9751825474cfb4e0b96f0968e317cdb884ae41193bd988de5f72134b0c2213
MD5 012282e0b2c083415dddbed8a022f355
BLAKE2b-256 acf92b96bf455c9efd581e932db5cdba6da994d0932b911e43315faee4c6fbaa

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fa9875324f47ed3bd40a5e17091306de696fdb859ce103cacdcae8f5ce866865
MD5 23e22c6716f6e543422d01bd33a91c01
BLAKE2b-256 8e8b0e8708c1755128e2dc5fe11d3a688778685549e2bc4021ec8116a7025818

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 926.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8ebaab6176045e99cec0a2a3bc3309dd285fe10f0a2fff714e39e56bdc0e2882
MD5 5f4a297f57d87f8e44bc2a2b6163f0d7
BLAKE2b-256 dc1af14b7eefb12129ef146c28652dc397d3bab03da549a1e5619b9d83a779dd

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4330fe7157eca8084a93424f2d82605456f7938852053ca8a7da9747be893f9a
MD5 fbc4293c2032ca6a58ed0b9d454dc7f1
BLAKE2b-256 63d5e75cbc79df289134fa1a804cc52186e5a20253773cc52fc24eb1090a2a65

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1018805864b5e9041675673adfcdd58ca66d577bf84d96b2c41ceb9a72d60576
MD5 f5b504f869f9915ab93c64a568ed5a76
BLAKE2b-256 dec9e755e8091a3784909b2d34c885d929a61c51b12c7c06296b1901ed40d5fc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 926.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 68c7d9eeb387aa89fd650a7f75a09467b1ab45abd63336961a0897a5690ddc2d
MD5 ff37a2919ca0d3a78c3198b9d2229255
BLAKE2b-256 8cd88832ae74ded3eb2885acf49f66abdf4fae360f225aa69a10dc95a671abd2

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cc22059f53c9e2af4cdfce6181a0fdb6bedd4e4754948290bd8ddc970e1a9a36
MD5 8b290e77c4c4ca9d53df4d9b6d693c85
BLAKE2b-256 5bc5d5c848d486353aa034cff8f44351c6cf9b8c514ab3992d84e5605d6ac988

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e5ce80329ad2fa7087cb640c95526541db8ae971b259b4c4c965895695d1ffc3
MD5 70399865219cc6a350c5d2993c37f1f0
BLAKE2b-256 e9dc45e329496b3cddcd2fcdb7bdcaf40dbb682b5af1aa63f0d2d32ea70b36c8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 926.9 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 507242bf6b36f4ae4432e3a351b3bbbdf007cfd3ae4531b17878075a96de7d8c
MD5 246a8162af5896ed89fe144abaa78748
BLAKE2b-256 4a404bc65ec90ca1df9caa8c39de8dcbae34e37c9665521138e2e6e308f0e7ef

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a7e5dfe0f001dc1e1aca4826f2ff1c7b938679c22c8701985d2805891f537be7
MD5 199f36cd620936dbc1e5fdf2a4b7bda5
BLAKE2b-256 71e6305b3ebcfc6fb6b5fa00a3038e3e0b4f36cb181afbfa445aa4e2866923d0

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201008214004-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a9165186752044f8850420bdb3335ea291b17d02b888d894adab1488db70db35
MD5 b19424cb0f346f8d34f1b134b0356f63
BLAKE2b-256 012db01cdb095b8f96097a9e2b12cbe17cb55086030dce2e0775d33371e4605a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page