Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-win_amd64.whl (927.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-macosx_10_13_x86_64.whl (634.5 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-win_amd64.whl (927.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-macosx_10_13_x86_64.whl (634.5 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-win_amd64.whl (927.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-macosx_10_13_x86_64.whl (634.5 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 927.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 51907fb8e6387deb4b59321978aa0c41344e402ce5faab348cac1b35824e2f6e
MD5 bd0c67e437429d13a305b3ae7f9021e8
BLAKE2b-256 0cc316a3d4cb65755d9b505209bb0b4b95ae500270ada7c7f7f2e6e04612c4e5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d1320507008421e9fe13fca942353e2c0c17c869465f65e0c092ec3982a22646
MD5 eeddc017de7a8d8dbed65ef2ef07ff33
BLAKE2b-256 bd3e537f1d4fe75cf4e13198c616e6b17f5915c4eaed76a7591d25f7cc7f0442

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ce4714b02ae4588d3ec8c10cf2b30f63c9abd52a2c2b9a6b8998d2697c3239c8
MD5 adb4e60bdfc9ba89f43657a79d148fff
BLAKE2b-256 fc4b905116fabd867f7a83773ea75c505ade51e44445e6cd25fe4fb060491075

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 927.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d1f3dd14da7d4e4c5dd8609cc31d30cb51e9755908ded65471d4f4f3348c205f
MD5 36cf763c5a85f7bbcc531b531ad1046f
BLAKE2b-256 08ecd465180758d995b794c8bea11880070ced0c1f9f1a4327d8ab3b9548fed8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 36ef025f55f1c11a1abdbbe665c1991674912f8d6a825f9914d11574b0272bc1
MD5 b7df0c0552d497ecf6002af810346f27
BLAKE2b-256 803a5ac8f11f838bed4c629a0275ec2201e30216cb4592b6de536f6f57b9e6d1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9e470e0d122a3a3f99086d472228db64ab032f87c074eaa95c7088da9b181f3f
MD5 d6740714f029922b4102d1f0576ee2f9
BLAKE2b-256 c4d68727fb857a2636fc4b1cba07629c59719838af30490676c24750771217c9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 927.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c1fc8cc733f4eb5d3fadeb6b59b81bfb7a99114ae1ba9cbbecb111ad98f4fa07
MD5 e02bf0f4b273a3c2a925b39d11de81c6
BLAKE2b-256 7bf070aa0d506533138d083ded6c4e568fc727e4506d5b884c254100f65637cd

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 688937f2690c8830acf0d0f787663eda2dd535f1bb010e5b730b12b29254d329
MD5 064630899c92f39e20bd77b717873b2f
BLAKE2b-256 b127e70b842c76f3979e7b9b1534d8207b8afe25226a8337c74f2f9b0bdf2af9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201110202233-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9ce2a1923d48e9374712c3310f7b58264af37f69a47d1f263705ed0db547ba52
MD5 6774b1bacea0721bbea33c1f4813b623
BLAKE2b-256 ce0d8a121a460185c2dcea6ca07d0bad0c2440606669dae4b4fa231022312c35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page