Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-win_amd64.whl (641.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-manylinux2010_x86_64.whl (702.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-macosx_10_13_x86_64.whl (518.5 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-win_amd64.whl (641.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-manylinux2010_x86_64.whl (702.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-macosx_10_13_x86_64.whl (518.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-win_amd64.whl (641.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-manylinux2010_x86_64.whl (702.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-macosx_10_13_x86_64.whl (518.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 641.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ac8935671307e529176f03fcc81a597e76cc596a5d4d2f8b5477d91edd3626bc
MD5 46bf97245b760ea4cbdbbe6f87f8d6c0
BLAKE2b-256 cc7c01e36aa0f2acda875e9d4c48e88b7cf884fac042c6db39516b17f0109f6b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d4af0b422a3053a14d9442cce4a14026bb42b75b3f47e7c2c31f35a66e06d37b
MD5 4f7acda39fd8782c9cda8fe25b345b21
BLAKE2b-256 21e5faedaf5eca584f26b92a7ae23d00fcc6bb7bffe1f5e4ee72337d745e50a9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 605ead2a42c5475bbb93ebee1431c9acce17496867e858aa3d0ccfb66e6ef13d
MD5 105ca7aa0db347dcc6f62e0f045df6c9
BLAKE2b-256 839f8c52ba0dfaebfb21405c2414c48770da7132dd91435b5c10e867321c7fe1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 641.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4ecb2371b8c72730ff537981e16f4d9e35c5609f1fb5a086258da149082bb0c6
MD5 a5105766c43ef62c0faa677c43f92092
BLAKE2b-256 69f129cadb6e5a1158285674fcf1f574d892161e6edac237cd12f893ab9b2add

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a311412f661a808a8274f6a66c8142775594524116f08d3e4f00d390c4069cf6
MD5 5317a43a390e1dc44527a8349978f3f8
BLAKE2b-256 b3e102a85dae051872222d25502d962d0a9e92a3099d4719b057141682ad5076

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7015ca4632060d78e97e704049daaafad965bc5d0fd5b0d8d7e90e72f7e15e5d
MD5 1a2de50bda727e9e8724bac8fe83eee6
BLAKE2b-256 d6830f3abf6766a691e6d9709ddfd159000ae6595a8e7790a54b0b3379909428

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 641.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 36dca58cfe7c29c2e7338d2cb9949fde496c93c118aa80889035bc0e1ec43d2c
MD5 ade952906ab4a2f607a0c5371eaa1d6b
BLAKE2b-256 8a802402549369c294ca031ca2d76c975c881e44fd7c63db23fafa8dedfeaf29

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 30412b2274a768b178510a02b8d164cf8cc652591a92e6096b7fa805874ba763
MD5 e4f528cf62f45c9565ef0c6b58f40371
BLAKE2b-256 51cce77403ab1ff1aef3efc7dc11258ab327d36e6f241cba946fff3cf8aa6d08

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043219-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b79591df9b0d8fa7a90669226eda95a24c4dc080ee78eab04f9cff41a7f14721
MD5 40e9b30c75fd3e8027d698c616c39c0f
BLAKE2b-256 4686597569d98cc065c9685ec026d0541e144357fb0361a632b1eed280e5d8d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page