Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.12.0.dev20201217043823-cp38-cp38-manylinux2010_x86_64.whl (702.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201217043823-cp38-cp38-macosx_10_13_x86_64.whl (517.8 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-win_amd64.whl (641.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-manylinux2010_x86_64.whl (702.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-macosx_10_13_x86_64.whl (517.8 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-win_amd64.whl (641.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-manylinux2010_x86_64.whl (702.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-macosx_10_13_x86_64.whl (517.8 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c2cd5a0b3ecb1121c8dde020e2fe1f4c414db8d0408340de5bf26d166f3d2a59
MD5 0a2a0a2ed492f87a4e3c2a72ef705ffc
BLAKE2b-256 304170295da14c1525a56a22b7f34a13e68f57d9d5b3bee64742f20b081974f3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 28daf0af823de1296bdebe332bb017aac54153876ee29e1839fd5372f66a0703
MD5 1f6447a99ef6d1ddcbe8c9b3f2f7343a
BLAKE2b-256 22c0a0b67e93a063ebd30aa8afc16fc38973781710453ac3eb5ae6b9e6cf9bab

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 641.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 301cc59c5788467c83ce1acd56b02fed00fdd5e8bb313ff525dcf2d9583fe984
MD5 bf533ec802907196c692b47861bd6334
BLAKE2b-256 781f957125f0b2cdca0790927c5455c0db40e20e66d6747e144ea3015579ce09

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a031a5864bcc9cf2b166089b7c5449a46c34a3a7d9286637ed51c2d26517f0e4
MD5 eab7a0107415111d5f3b9f45355ac643
BLAKE2b-256 17816708b0bd9cafe12588cf51867f31755f32896efd9621b64fdaa6e9f96670

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cb655b9bb7ec1c39018d4e02a4273fe9c3947855795fe392d132769c6562a63e
MD5 ee7e49cb6d9df965bc08d63d53a92957
BLAKE2b-256 3428dcad3c1572ffb35443eca31fe4942df27f0162be3060cbad83127d04d071

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 641.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f5260641be6f4f7e090316e2b1c710d9f1c09693632303d93f76ef9621966fd9
MD5 ca773daf1e5beeebf48f747680f25df4
BLAKE2b-256 ca66ab6cdb459cccd63d548c135faa4f2607b445d5c52e8f79242f2ab252b3d8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 51804a6cbfe51431093cd84fcf2a222112e67327d602ac5ede427b242c9743b2
MD5 345929c6cd6d98aa8417edeff275ce71
BLAKE2b-256 a5aeee5a4f73196844274080509c79f9c5fe566322305fe6fb5b15acc030ffbe

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.12.0.dev20201217043823-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 df7fda95603530ae58253cf81f921f0808fa4d15411c8603e791a6e9a50e0d1c
MD5 bba0eda825f6282ab993a791917aaa7e
BLAKE2b-256 434ec9dad490a8a2af63179d186145eb7b231243cd4daa5592cec600ca859629

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page