Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-win_amd64.whl (644.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-manylinux2010_x86_64.whl (706.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-macosx_10_13_x86_64.whl (520.2 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-win_amd64.whl (644.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-manylinux2010_x86_64.whl (706.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-macosx_10_13_x86_64.whl (520.2 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-win_amd64.whl (644.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-manylinux2010_x86_64.whl (706.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-macosx_10_13_x86_64.whl (520.2 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 644.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 77dd2bfba107b82ffdd5ac918323f83771bbeb121d7a13984f9a40e6ae4f8b8f
MD5 1bcef81e7f8cc1703ff4bb07fec62e0a
BLAKE2b-256 3e735f7462c1a2e3f6fb478eaee51d7d94e3b8ee80c1fc9957890308311646e0

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb4b23831d7c7ac0a55d6c4880bc59d2f4b5dc2a0559a077540e9c66464632f1
MD5 71b83f979995d279232bb3b40824fdcd
BLAKE2b-256 d7dd4f78c27a93f5883418cc35fdfe5adc335c5b3736a1fcb080602a853cda6d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8ed44d3990665960b482cacad2ef7ebedccc8c2bf6a614cfa2bac08e35ea0aac
MD5 734a0c785ee42c5b098c14e41bdd2b38
BLAKE2b-256 955a3d9a1144c421d01a85f33d52d39fc23a9ebbdfd30d2dc811621b3ba01778

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 644.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 336789e5c5f870ed4935763e3a8b715c0d40a9f7aaaecf0d7cad950c842ebf75
MD5 673a28d236ab60866f76b7c27480bd2d
BLAKE2b-256 519040711da738a5e5ba939fd836eaec547d47ce3480c97bc00b9c7d4ebed913

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cc3e9c01daf9b00e8c17909aeb2f130262d07373c438b4610b9469ec0081ce43
MD5 17af376bdcaad768822e7fc9e218d244
BLAKE2b-256 4881731e995f8075f358bc4cae2b9aad46194b1cb810221b7504c3c5929e970c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b4c7325f43449bd0b8e90065df97f405e7c81d96c25746f55dca09f51572d810
MD5 84669efcac85c08d20429da2f2b6ad6f
BLAKE2b-256 990d286fc3139bd0cb4e50c002a6a5052060a57e9ca8266c1fc51191d43a6d8b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 644.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 47682169eb0f77e7b9fe01e9b308dd2aca448fe82f9391de685efaa1ed964473
MD5 8e3f0e79be384b6ceda6e3b79eefd853
BLAKE2b-256 19768b97d52e631a8039f2344b3315bce4ba63954739ca5c577e02d5e0787341

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0ed15e33596c2f1300fce8442f7158480013ce3aafc8a2f9c18f670ae7ccc58
MD5 a299ba9195a29d734c898a0ee8922656
BLAKE2b-256 dfb913c74949a4f073b93d42009315bbccb2b31b8c3fdabf14899f998c4864b4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210125161221-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0447f4b0b7dbf818138e2ae76bcfb4294100cda08892d8c82d8a5cbe4f86d900
MD5 c1b131c8c68f534732160781769dba88
BLAKE2b-256 bcdff92c1ef790cf853caf8d7b8771cc98d049af033d8f379e9eab6b10638bbd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page