Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-win_amd64.whl (600.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-manylinux2010_x86_64.whl (648.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-macosx_10_13_x86_64.whl (491.8 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-win_amd64.whl (600.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-manylinux2010_x86_64.whl (648.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-macosx_10_13_x86_64.whl (491.8 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-win_amd64.whl (600.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-manylinux2010_x86_64.whl (648.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-macosx_10_13_x86_64.whl (491.8 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 600.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 864546bcf7fbbf4f66b220e9ee5b34ccb4f134f9112906218da0c138f6a30261
MD5 90cf325e96ddc351dd32d74ce50fc970
BLAKE2b-256 1dd5cf7553c7c30c0a950fd65e38faed6db9b088332d0de09595aa191bdc2b6b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b1318e0984f62950faf256865666902fcb5f8992c362eb7b74d0aa0bae2577a
MD5 7a275b428aea26466dbc4cc223f9b0a5
BLAKE2b-256 3eddc583d261a2931bb33fe348bf5d5755333216c0ba9510a9fcc54c507621ed

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ae4619cb0d0ac1729a411353298b65fcba3fd9ef24ada4ad00ee67735033d0a7
MD5 eda1ed97004708848d4d1315e2d08f41
BLAKE2b-256 c3067252cc59e7f0d9fbc4118d538b7fb7bdf11f48d80f6d6136d576b42635a9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 600.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 80997b68718e5470f3b088adfc80d68619d56dcb445dd86570fd143dfa2ae099
MD5 14baa3193641b175ee21b9d66ceb6284
BLAKE2b-256 6a96fd06a60e0e8bb8a649bde38d704652a6312c033719540259d12bc0380c85

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f31b27214a5f08ca26979e330bf2a5a4672523850f1c0306af7c9071e3bf595d
MD5 6a6e6ee5dbb5fea43e22eb2e6768562c
BLAKE2b-256 73244307ca605218a9ff7006648d98542452a992baab0d3f43ae688aaadfa767

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 87b202e521ddf252ce66c33eb916c39c6a9628d365bb707fbe989add2042a908
MD5 f3d27fee3b920b469777834fe20a7254
BLAKE2b-256 0cf71140367c7273fe9b6e2403f2b754f3ffaa060ab6c445d2be31a855ef47c6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 600.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc955374cdb52b287a2f7ccc79feef06176d7b7c826a2e09d8e422473d191379
MD5 bcd577047594bd69e357944b296693a1
BLAKE2b-256 74601e68a7adcf6674b35c44d18fc47e0f2458b2b099deb44f27386dc8e61841

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 53b2d8315e511211f43d5b5501feb4b92fac26820ce1c22b97fa15e586f0cf17
MD5 cc1e2270a4b4635bd36e4c180bb5c0c6
BLAKE2b-256 8b9eea2dfc13d29f355cacc155cdb8ad6133527fcbef5e1a52bb33516c5ef40a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210324143012-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c7d37387be6cc8935f4bf3d7fe4b680b38f286a309db9f57906fbb31f928b8a6
MD5 012f937cf58f2804a2553212747af3a1
BLAKE2b-256 ff2c30136e4743f21166d987a66590b2d82870def0a95c61bac9dc7b4fa9cc99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page