Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-win_amd64.whl (604.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-manylinux2010_x86_64.whl (652.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-macosx_10_13_x86_64.whl (496.0 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-win_amd64.whl (604.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-manylinux2010_x86_64.whl (652.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-macosx_10_13_x86_64.whl (496.0 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-win_amd64.whl (604.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-manylinux2010_x86_64.whl (652.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-macosx_10_13_x86_64.whl (496.0 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 604.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf6d861f09a54d48db8e9603adf816bc097b1a2a0d19d0445e194ecd62b205a5
MD5 96e9f8f67d6a37ea73d71e6d2f431580
BLAKE2b-256 088fcd9f87c3fb04e6328acdb5097a80c5aa213161a403bbcb7be2390c469492

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 85af869cf896ef80062e6080babcbfec34c6d14980606116a67730282f458d4d
MD5 75a4a74646af24e0dfc42148e451ea41
BLAKE2b-256 650d5d125e56305dfebf6c5a78d0cc635791b7caea44587962a87453b9270e3d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 513e80861ae99d1c9d351cd3b95f47f3111da8a8d098a667196f8dce2da6120e
MD5 5d835c954ce31f35b03240f6a0f72558
BLAKE2b-256 b1b12ed52444da517e71357f94836c413e530ec9658cbe6d19fe96f757f459e9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 604.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8855f18a17fd92163d51301a5c3806bc03b46bfe8d1b81b7d1a828d236b4d908
MD5 c481ef1a7367cbd565138db6c331de7d
BLAKE2b-256 09acf301d43e1c4779d3dc4b3269789d7816cfbffb963f8ad4081ab996e3b92e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dc937baf268d7f5ae8066c4cd3506d640ccb018065c85644c33b27a0e617ac23
MD5 c5dbde1572ea78822debcacc722b3472
BLAKE2b-256 cde16cbe1ac524c42e3dc4712969d0d4388879221066525e0182ff74209fc5bf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9a5a1cdb68a9b4f281e901cdfaf98cfa2ce74cb64059ccb0a964fd36d1a02e44
MD5 a9d0f954717705707c5f3f4ff69a0015
BLAKE2b-256 ad12521d3cf44b8b77a5a5051f603c0fe30d02e5aa70f915dfb6351ed544237f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 604.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 149d5562da1c92401ab9ecca09a9c9f592de51b13041eccfdfef3b5d0eef1e73
MD5 587bed82e12ec2a25b0a867de2c81400
BLAKE2b-256 edd72f94210f25893fe7b9504cb9cfebd2718ec39a72696ec03921fb7012668c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f042b7a9acb87f5ab88e6e42a2fbf45edd7ebd816d7cafb338da6dee7cdc92f7
MD5 fb1e3aa7692e453e262c842da6f1ac7e
BLAKE2b-256 852bdf3237b64fd6c29af9662657dca8346829f5638374f548996190c5eeca1b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210513193850-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a60825b5fab01a490d4c494fc455e0d87379afef117e987b2ee9f9cdd95fa0f7
MD5 17e5e4e6b5e748b18334ef0ab2458877
BLAKE2b-256 44f0b96e27e7fea9c563776b33e158c90884078e06a553ac08a5a0f2c7184028

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page