Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-win_amd64.whl (618.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-manylinux2010_x86_64.whl (680.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-macosx_10_13_x86_64.whl (514.8 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-win_amd64.whl (618.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-manylinux2010_x86_64.whl (680.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-macosx_10_13_x86_64.whl (514.8 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-win_amd64.whl (618.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-manylinux2010_x86_64.whl (680.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-macosx_10_13_x86_64.whl (514.8 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-win_amd64.whl (618.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-manylinux2010_x86_64.whl (680.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-macosx_10_13_x86_64.whl (514.8 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 454817d22182041d0610a4543d17bc5bcccba9bf1618212ad16b5416393618fe
MD5 f8fab864175e70d65a68d7377930036c
BLAKE2b-256 23ea303dc81195d6433c6576f6263631c7588959036105896bbddab14e6da1bc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 80b11250f1c054cb0d3f7b028ddcbb4ca95e84450c614abb3023cb155d8fdcaf
MD5 7e05c73877c22b339cd5a001268f539d
BLAKE2b-256 e0ab47afa49b223e9a561a25258f474d9bf23cfff56e6397fb8719cd0dc3edad

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 71990885a164a9eecb6af2b7dc2b886240a21d6d81289fd605fe27d01a36cf17
MD5 869305c8c8f64ad48d004dc7e004f67a
BLAKE2b-256 5a32a7ec8ccf62eed5f0a85ef511752aad6103c38a35e7ab6d2a42887faf1f4c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c35c5a47fb23a0e8cdc7524f9455a9a47d642f96d755c6ea16444bacec982459
MD5 fb16bac6aa452e00d4bb81a1b6d41d63
BLAKE2b-256 7b3041523655e84d36ef5ff99268df7550456bf141132fb718d46b8d6fc1de05

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fb2efa51d7034182cbf4b3f87b5aefc7759224640108355b9e25400a7d6e24d7
MD5 a6984db6b18fdde600ddc8c0cd49ba86
BLAKE2b-256 bc4714e5d6618cb0a3bcb4580282f6fe0c622631ba40f128f8fdb987693f1f0a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 53a4b92dc76bebe55326969553fe5f4ac8fbbff128e729fca5319a054d26fe6b
MD5 7d46b03f0f2c69246da87bc049b409d5
BLAKE2b-256 97e0b72991347c865dcacaff478c9678656749f5a09c9e5fb3196ac36d980078

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 23475d689d5904ea9e3cb90a3617ebee4159922c57e7c5bdd17620ce632f380f
MD5 7ebe761395aeeec61facf55879773e8d
BLAKE2b-256 36bc382dc0c3b472a5bc787558c90e4c73b9f111ddd37235c6a1efb3ca553b96

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 360852b62242fc8408015c90058c6e2fd6b80d4c384c02329098f7324038557c
MD5 c4aff8ec3264ab078a5d059a04ec9b50
BLAKE2b-256 d3a1ef5a98e651515ff05e704f21b5510603a620e9a0f92e2731034c3dc4aa19

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 df72fb36a946091c4dfe481defa42be1667d9dd7b0c0c2ca067bf8dbc5e90a0a
MD5 0da8aa599847437d440c7274bd07521b
BLAKE2b-256 d8e9d5bb0082b0564ae1cc6152404eafbb2e3f2da424e95a45b879875befd8e1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5ab11a0b1c3b87814817ac83d0146cd9d8fc59a34c40323c89663d991c1d5481
MD5 bfadf364cbff2517d34cb327a67ca523
BLAKE2b-256 84f73a57930841575e129e4a1beea79e773b366b7458443b16aeff443b1253cf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 23911b06351c320686cca41975dc3e77aa40a3025889516d82ffe964229817e9
MD5 75fd103edcd644070690551a4921abce
BLAKE2b-256 25f4fae382bec59eb2bedc82f99a2b445f2ebbd7dbf415192c6cda4852ec16d8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.13.0.dev20210514175928-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2ce7ff12aac73e327d0015deeb76818919c9eb5c10bfd1cb837d0848bbc3cd16
MD5 66112f960c1918064126356e32f1b7ed
BLAKE2b-256 54718df27dd09ce60a229d49694cebc730ea9c906ab9bfb0ae35737455dd0871

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page