Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d64a089c43df1af8aa60c195ab5cd6c3bb69e6dcc5f000919f510639898cb878
MD5 ae809aa6b85352dd6bfb186910db3f64
BLAKE2b-256 afabe4b7bbe4b81b408bfbc3ff5b53d947b9dd14ae3b5eebbd1accf89c97969f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5420ae5642f13a5c444e9074f326c14b85cfd15f66afafdbbd013766b8f6d7ae
MD5 a28f2465410e56dfac086cfc9be95c5c
BLAKE2b-256 1c433b82c409553d8ea4dc57c786bea988dc3dfe8dc3e59b9b77ed4223d8937d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1a9f37085b003a8f3ac7eba589121baf76c8beec6c43b9d9c548cbcac7ccf9c9
MD5 b0c750d25e750db6058854848043015f
BLAKE2b-256 a19ca3024b1be65b98446661269693485a6295356000fded93fe53f90f900b34

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 aaea75dc4e51a1bbbe9bf578a5324dbc56174a80d420f556733ef83feacd0340
MD5 e2a842517a11b30c031ca4c5e113ee33
BLAKE2b-256 3912a9d28ad1df981049e7d020ad9ddef7a9b584e0c986f6ac18c26a892dd3a8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9984199b0e625d2cf3786ca8f299ccb005511a02e1da1aed10a40e92ccaf41d5
MD5 47ae8d0c0b3643cb290abef6580dc62a
BLAKE2b-256 0137fbf395c62b550c12b66c87617f95fe8432f0bb5f743a1d68bbb9278deeea

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4ab2f8ef46fbfb3775d4bac520245e987a413e79677fd36e49c82b2113fad3b2
MD5 1e07c7d6ba3841472d28a3153d0c4c07
BLAKE2b-256 4f06d8d0dbe2ab9adf422f8f4c79550f48f78a0855750892f01aee6ead00eac7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 092c200a894158432be9300a5ffb8c550cc1d9cc2ea1df6bb2bf9c956dff8f5d
MD5 ad584a840b66b4094cad9cdd061f9c61
BLAKE2b-256 0a7c6c62c8ced8caa604e5bf209ad7e23d7c5f891790a984730ab09fd1ad3e67

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c96523c801cdfa97e01ef45cd8a88230ea8b58624d0d309bb60d7ed7a16ce7df
MD5 5e2ae95163ed471220a93e134020a7d6
BLAKE2b-256 81cf07d41d2803d41000d15859115f63b9df32b23629681a9fccb117357235e9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8f2daf42e6d10ae724f6b85f454072d716e4b6a10d4fc0468b50a443f2b55ec2
MD5 5e15cb5ddb46bf201a25d40b518f13c4
BLAKE2b-256 c638038609ead06f5511dd1d021c2b36e98e491bd050cb55968fecf43cb2d12a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fdc097965d7a6c66fe90662bd5bfcb8790b958bda37cf589eb31a70048a34528
MD5 39d097ca3d4961f88141bf97e854aed4
BLAKE2b-256 8674aca8c6c7de78eddfff2fe8d4ec7768165dcdaa82a6e47662c5cb7b1f230e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dabb33987fc5fe96f2f719c4ac7cf07cf2d6dc5a740038e85887a3e8fd553d01
MD5 65b3b2fb227351389e43cfa2069421bc
BLAKE2b-256 38565dc5dae32607aba3aea937f4f2b34ba7b16a0e0190a7f0d36510e80afe6e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210605230927-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1fe35c263ac42d729d4e66ea5eb9d1855b8050cdfa57d9b28773d3eba113b3fe
MD5 55a05c2ac5ebe216115d5275528dc090
BLAKE2b-256 2b8b85091748f4b0261e3ffa69d803b4433f19b1db8f87ab1069e9c73dbb6d88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page