Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-win_amd64.whl (746.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-win_amd64.whl (746.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-win_amd64.whl (746.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-win_amd64.whl (746.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 746.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6db5fe228d7d95ae3a2ed240def6c879d0e853c8189c8f19a26d79b0fe0631cd
MD5 cec4f3cfc159e301f7aaee42246e222f
BLAKE2b-256 e858a30f49d558ea7a72bd1bda54d1bf63d2adc498c037d95752ed10e6bac5a4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a946394088adc4bc279ebd52b2475064d1ea28deeb092a53a3e5aa65f295fe0f
MD5 ab10aa3287ad8e8843554b71c2ba9ab2
BLAKE2b-256 aaa6c213bc43c5e23d26b0536f633dfa2e2489392a9167708358e5185a0cc8a5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9813acc5183985e61bb25740cc0bc900c19219dceeeb854212ae5302332cf861
MD5 4ddba0d2d7b74b4256e502299c39ac0b
BLAKE2b-256 f3df0acd3a0fe999bf8f0ae99b024821937fffa327420610caa908eb54ea5c9e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 746.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8f1371e7f435d62691fcdfd39ffc60d994bd780cc91bf5590fcb56f3eb3282bb
MD5 da65188ad48d069e42de66904254aaef
BLAKE2b-256 d21580c1da12d1bb17b701c1f4e588197c4a64a9a89daa229ab24c468fb19fbf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3b87fbcadd5fd57a018fcf74dd3b389d10e1ec626977b09164f74175fd558797
MD5 dd89efe677752c283c7d7ef6e9f3db02
BLAKE2b-256 478906670f5fcf820acd61fe48f0fe95bd3004c473403c82d5a83490155db582

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bf7d0c6afcd2a4e6e50f7d6fc5780926476c2a7f2ee13635bcbbb4cabf9568a5
MD5 e7e675b43f9caefaefcf22de730f70e3
BLAKE2b-256 8494226bb281442f53613235d7c86bee31aba2435c22ab7ddc23c39140293274

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 746.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f010d6761055ec9580dad79ad7ca8830822de9796e077a0301f94065b1650fad
MD5 caf0e170673cc56f68241604ffc61fb1
BLAKE2b-256 0126b3c3fe9356d0ec4c9a9852be1e3347ab9ab00132cafabdc492aec9b04094

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c551a45f0e229ce0bf0ad08016a225f6ab21105a8025e2096d8f1da49968c812
MD5 1c75518114f04ad44a8ccc2154cc30be
BLAKE2b-256 83a7031b77ff479e13ea098bb212d74cc12dc80d6e271ad42a526add34c10bde

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0cd637929dbfc8fc3bbd98d3862937c00e2ab03fc3ea0f7752a33d56ec4f992b
MD5 d332037bdd986be07af039642c48c5d7
BLAKE2b-256 8deab4319a2e56b7e5f7e6da9fe561fcccea76c213d6d1a6b70186f8f3fedc28

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 746.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 75c66628695827352d3dc04b35e70459b5b597e80bc8d62a6492f99debcddc3e
MD5 b56cb1f978e0c1515850b6dc243aaecc
BLAKE2b-256 5d81afcb6e3899d6538601f623726a9024144a865f92de4a962ae612e6cac382

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f0adadcf1a8d5336adc085398fbbdc81cb6454efacdc8786f6789874ef8d18d8
MD5 d1bac5342f77bd8958e6193638b7c8f8
BLAKE2b-256 48c00e9b9415686b9cdb417cd6bca8ab508cf6deaa25a376a7f398ca7bd6017b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210701034712-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 dc2fe6d119a5899fe6bac018ebb317d50b310fe4564a13d536743e867e17a626
MD5 abbb3d7117e4a572e1e649aee3656539
BLAKE2b-256 4634fb25bba3b66fde93f38129a79c5192032dbff417bf8bbb8779bbd857b187

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page