Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-win_amd64.whl (746.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-macosx_10_13_x86_64.whl (578.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5aeb03cb757394745d9926a8d4baf3f0f98bb2f6a2a5cc767c4a710fc9834708
MD5 171c5b358654e24f3a2536732bcb6584
BLAKE2b-256 014dba5e9132a98ed5b6620a2cfaa90a5548afaf649ea4a1fbef7a7879d36ac0

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3572eca9c93d0fa86a8dc5db9f72a2786c16b3f9a62ef32fb5f76a299663dcf0
MD5 9d664e3bae54fbbe10510122b0385dd0
BLAKE2b-256 d18bd32da4f7f1173b41b4fd5ff4fbf440f61203f95309e72bbd9c5cf650ef01

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2077710c0cdee2ed1b1d31b2b3bd3fbd943a2409bcce7ec6333757144fc64d5f
MD5 8af231dac069d5be75d4eef4e9bed71b
BLAKE2b-256 f1ca60ecc5cbb667c4fa33b200564a09ebe38c53022b292815ef45c984328729

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 59e487ef75cc94592e0446ad1ccf6f1fe3db66830169c14e4fba76372ce8bd32
MD5 2eb6e2c9ae51797804e634fef0d41df0
BLAKE2b-256 4274a0eebb029debc5dc2af6a9737353d10c13e7b0cfdd07a908fa4d6eeeea92

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 564203c505e693985023ee59b58cb5747f14cab61c49838e1b8fbad33b897958
MD5 1433f921810c3d97e09863da176bc482
BLAKE2b-256 600fcaa4154138d70f52ae18a65239d7b41d558db9514e46f8f3dbe5e2cc3a43

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 76c8215f2a5d5952513d270882974180e105fc20d3563069e61b61d1504c0a49
MD5 af1ae1726c1d93c3e7e582aaa5ba6b59
BLAKE2b-256 634716c0a588bdd63c308905a4925460abf0076d5a1468538685bffead135ad5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b523472067a6b05c013eaca5146c9d78f0b032fcf5d0906f53408bc1c3291256
MD5 4f92d7ef84825b7e2f322e4ded2e726f
BLAKE2b-256 80637a23e961feed4aeb98098762c2e497e8ab1ad826b5f86126b84a50df0398

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b26805d99804c7f2b8f87c89684ccf6b9494702e996a293e30f7948872fd9798
MD5 f84bd2ea7fa27d8108380bded62c80d1
BLAKE2b-256 b84331a2c168fcf361a8556b8fd29a388ec4150596810820d67393be6e67f872

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f9e36693766a3db4511d6925c78e9213e8d44dc9f4af03e6766f521c50a5d638
MD5 3f6e0cac8d6f176217188fd9824cba6f
BLAKE2b-256 aa556d52929edc24625fa9f0b1c8427cc49dbffc009da0d2d3255fe6a6b55097

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 746.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 71702440ac08c3dd77727cb659aaa08ac2c1954253ee56bda767199a64c5a012
MD5 2c73be51279db406b89a1b003cbd40a9
BLAKE2b-256 f1f7912f577c48005d477d955a3885769730ca459f87086775770d49e55c1935

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8405f07fabaaf99e59aaa83dd2feb23729969af50de77e85fc2d11a6d53c6c11
MD5 e6ba72d160615fc98e035f12093a203a
BLAKE2b-256 b2739942bb351489c43594af9dd360c581db6cd7a430b462010b2ae4fb2335ef

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210727095917-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 12233e42d6f4cbd3a5f662e86b363ecb7181110d7164090c0d1e2a5ff3405510
MD5 07be462fd3e5bc609f06ccf5ea02fcbf
BLAKE2b-256 783512aaae9227a9eed767b2b0e7f1d13516e4f1b194cbd25b55b53d645eba1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page