Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-win_amd64.whl (747.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-macosx_10_13_x86_64.whl (579.1 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-win_amd64.whl (747.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-macosx_10_13_x86_64.whl (579.1 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-win_amd64.whl (747.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-macosx_10_13_x86_64.whl (579.1 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-win_amd64.whl (747.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-macosx_10_13_x86_64.whl (579.2 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 747.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fb026baefe80a2a520b10b7bc605b3d612f40099b75d28f91e3f91549dddb6fc
MD5 2ab6487cb70102dcf0df4500e6b009f8
BLAKE2b-256 99be6931a9bdea0722ab606d7718ba02ed2a741b87ad7be7341a3b9ebaacbf8d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5236b1dc37ac2c663f1d6757d09f91dd1f04395307a53d770ec3660407a50979
MD5 f294959adbc0e5ce34c5f5e69b4705ee
BLAKE2b-256 edd2c0963c7e22192d3399d376ce193f52a4480586014b78e2c3fedce2ad2756

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c03d7555e7f7a0745497a5d6d5185e1e132c1f58c53ed44b6039b6314a38870d
MD5 3dbee3101036539487fb1c71cd61bd27
BLAKE2b-256 be87bdd0ab0cd1cd83035c09cd8a565f3e0424a67f74844a9f12fa68552efa5f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 747.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c47e730ef1820b80887e29e4436abfad821d907ee31e06591097228d7fbe3c50
MD5 4027d11b769bc4be83bab5f4122facfd
BLAKE2b-256 302c1d223c3099fd4ddec1e4455f1a814f48a65f8a19716c39d9a663c28e8d50

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e4efaefc9f4b5bfb77e36cb39ee85f312be4477b0f2bf09c7172933eb3a09d5a
MD5 4d15a4a750645371548fcd7e7b7978c9
BLAKE2b-256 030c2c1d1966e07b568fd89e7c404c9d266108b3cc733a33d4da2ef41c0526eb

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 048aed4f23829f1e9c6cd887771942888bf404ee288d0ce79ea6ea309816f99e
MD5 e5c25079fdd88ee4ead8d8473861a36e
BLAKE2b-256 3cc02aa876d9706fb0247d3cb03f557e41e95e18ca97d2ceb15cc727a56d8a58

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 747.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 971990c385859288f455322d521a6922bedcff5ce179c017e3d44cda20d678a4
MD5 38fe53f5e158c79d023c8f3553219646
BLAKE2b-256 6c81766e18c41a6051f53e47077323c3c398e93c96abf368e62f0786943695de

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8aa0cd22856cf3c647665e29191681dd9f48535919b4d96053bdca8607a507af
MD5 ab6a6c4dee5702564ed2670e1c29ca2e
BLAKE2b-256 1725eedf2665344b6a05f543de98f81ed3ed12a4a31fbcd0b47afef221554e3b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 84777e2876644f1b3f9684acb65e9437a94a7d1bc9b62fce63da30dbe2a2217a
MD5 2c495c137f4ed8b1402e327db804d3ee
BLAKE2b-256 7a9fa63c51c75d4a395458022c2043fe25dca5ad86094260f61cb9c4af066184

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 747.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ca846ac6de6493e3e081ce194b0133b55919e8043148a076588a3e5d877b692a
MD5 b51c3d3646791453a752f84dc50e08c9
BLAKE2b-256 f2f42ea158f64ff2c79fd2183be256b61217b70931ee202eae91fd0da57ac18b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d53e5f5125ba50dc2aad57090052a571a751dabaee1854f6d1a2c4244ce97b4f
MD5 a7d3f780001564c4ae38831b082a4348
BLAKE2b-256 adb68e22852b1ef14cded9ad3509bcbbe24943252b62a3587e8b772b8e75039f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.14.0.dev20210729193609-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aa209018785820475fcc6cad707b86c6913093049a6c91d1b238ed3fc2c7c05c
MD5 bf950035dbcfabca47ec65065f76d3f0
BLAKE2b-256 8557ab8735b1ac9e12f0f3feffe1cd42aa19c72b91090cc7e1d86b7e12320347

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page