Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-macosx_10_13_x86_64.whl (582.6 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-macosx_10_13_x86_64.whl (582.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-macosx_10_13_x86_64.whl (582.7 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-macosx_10_13_x86_64.whl (582.7 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 77972b2e2b83e5774dccf8a9ae0dc124516757ec5a497d0983f166ee5a048a26
MD5 451fcc3a93103425024ebc8e4d1753d8
BLAKE2b-256 4027a05c70d7ed75e9e885178980cc5da85e65072ffbd51cad2c08553bf5c850

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d561a1907cf148d103e4625e5297c5b00f0ff32783af72a68d3f35120908cb9
MD5 fc5adc08b0513e35acf1a9c0cd8af6b2
BLAKE2b-256 fc84419a755f57ad147109fb20c76821e7a5afc8b27759bcd843d474c6e99473

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e2ec662280f42a57faf5056b9640e3ddf880849ad363031f4c00669cc75f51ce
MD5 82c4069f93aa35afc4835a9ee33edd6b
BLAKE2b-256 231ebc6efe0327b82f183d4951e67911e4b5793be096368a93dd08095bb58303

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 17e74e69c84216d7f9dc07f6fdd14366d90b9c8c20cda5190f08574f684d8b9e
MD5 f00702b43b741e5a06088674135d21b0
BLAKE2b-256 dadaa6178991dd227f16eab5f08f17bc88a446d27521bf1eb4f02b9fb79c1cb4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8bacafbe9c7b33ce8de948d946a4f1131963cf16a8e9372aae39916f82fd869b
MD5 0bb77eb3e131e67248e8c9f2bb6ec5e4
BLAKE2b-256 6113472f7d28d046ffd3b89a8d088fa0af653fe0e7630af392f7d0eb65c63aed

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 552439966a5176b59b04cb334a5c992b196e2d1bef692a4bb974139005e11749
MD5 07b5d0116f4f1516bab0134acb0398f1
BLAKE2b-256 5f715cb1d2c3100d398bafd6fd0379b1457610508157c6da810a453b4579f1aa

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8f33fdb5029eeea66c8489b270c48c6430ba144345533ee1ec891999c66e3f1c
MD5 cb2c5552e5ae9770b05d7578779e8358
BLAKE2b-256 baedfeb4be7a0f318fcb373024286266521556135b568db71e998bb388ede1c6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 617d4f54ffdf3f983dfb4e81e3ae6c7625994b39e8647b8854382db3b18023e3
MD5 3d7170cfcb769d738042adcf256a4317
BLAKE2b-256 115bd7fa20f4f0ff508aca6af1080856f7e588a66b320293cbe43c083d662fdc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0a044b9caa8912ac345c69aa1ca5722a52d424c42b1d17d037ab3d1c00ff8245
MD5 b722fd0dc14ae4169ba7c3a540ffab02
BLAKE2b-256 4021ccb7ed074d58a59ecde661ee4e34baf1d40adfe47396f11d6f5726544b41

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 afd05e088313989ea4230d260329727db77b2f5dd8429fde1a052c2e6b55a203
MD5 48f70795bafec9b761fd6abda008f00c
BLAKE2b-256 2d4591e0d2f022e0d71062b7d35e83b20c015d8a95e3c9d8dd0bf478beb9636c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 324ee73c697d0f10180e6487d3ad7c6db61a96a09c2ebcef52842deda4a6db3b
MD5 edfd84b3061ee7cae8a64a8c5b03f939
BLAKE2b-256 916fdb1c4785b0cf3f29831a1514052b9ffc449d1ad3e9b37d2048ce21fd8a96

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210825184357-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ff74e40d9bb7d7ba07a6ade9af2cfc9a5f6532a063edb410f42e8fc59730f96c
MD5 5e9fdb6d38aa957c08ccb54bd31f905d
BLAKE2b-256 af0eb097ed7441c25f704e5b07386037e83343aaf4bb0273ce66da31152ac290

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page