Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-macosx_10_13_x86_64.whl (582.6 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-macosx_10_13_x86_64.whl (582.6 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-macosx_10_13_x86_64.whl (582.7 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-win_amd64.whl (752.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-macosx_10_13_x86_64.whl (582.7 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3695abf799b2be76f93dc4d8314b8406f634584e668d2ae188da69c352978136
MD5 ee3b64890ba647c63ec188e6c661db58
BLAKE2b-256 f96c187b7f835992d2627ff6fb3fa991c9ed4b51d47b23aad16c4a67e3090943

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 344842a77b53c49785de36d1afecbc8a88852540e24d26e566e67f9a7f654fa5
MD5 be0f287fdf44dc6661e027423ecbed32
BLAKE2b-256 b0c940e75dd55b4a02e5db8b60d5565b76a7a4dc0c084e0dfe0d5d3d94a718f8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8ddc90c3fe01e44786b3bf528d1ff4c6e5b17eae03eebf1096c82df3a7566e8c
MD5 5af8f71804e9580e7c92fa63778de735
BLAKE2b-256 3250a462c78fc91f35839c268e299a993def732046b9944d0a042f71ef3d87e3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1f0122e027c83cc2318d5f3fac941924a34d12bbe8e91116f3c9f4a098523391
MD5 ed45e6dbe91a081d9e3ab0b498edc62d
BLAKE2b-256 774292ac5bfd062079b99e534ff76ba90e469ab1449c2d71ab938c5fc5fb1f5b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7d7512c9ccf4620613b7ecbde3e06bbfff4f3e749844fcca3d601c9849bce5ff
MD5 79d1c5be9181835d9447fdb59e6c6b46
BLAKE2b-256 03f039fa24d964f44d64a726ada3df8f2abfd5be1a221f2950d7f57e9fa05e16

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5a052ce536446cd1ffbccd08563aee9ff0d3598db04d54c05373f117b2f2e586
MD5 5736cb82d627fb5898a80e62deef8e25
BLAKE2b-256 dd507fefcc50ebec48cb5c3838a8539a234921e9d71a6230f1b3eace72dc039a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 090a2b46033709dacde93ad5080f0521bc079a71e01cce4137feb571c45ee195
MD5 11f30af1d19b58eef9d1b8f1dc44dcec
BLAKE2b-256 b50f9d05d1056ef62e9c63c3aad51bfb4cd303cd1852e17d444f342d9115cae2

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8fae54ecc2da3ad271967f58ed5b533b795aa1eb5a3e6caefdff619b811d7fc9
MD5 0934d0d9d134b27aaf197f4e31cd9a9c
BLAKE2b-256 b92e6b1be8c75db1565dfe0457cb4867184bec393d2cf803b923a2835530cc43

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 60224273040c5c8cb361b09b6044e37289eee1a32baf9e2d7b4a01272443fe82
MD5 4bcf6da781adfe20210826c3d4fe42fa
BLAKE2b-256 f5c4ee013427fe117320135d0ce990293605e2371b2e7de8e0b8bb421e603056

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 752.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.11

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f73ccf1aa908a20de3eb194c98999ed565847d2138b30337cb6d837d3e81cc5b
MD5 7f985b8d52eb5320b6a3f7dd9e102a9a
BLAKE2b-256 7d51aca77b1837d087399fb3f470a7873b13c00d7a0fb988f1c1a489021093d6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 140d9c99bd472d6bd5673fb5a614d7da793cd09fc639373c34c88d1ab9ff0ada
MD5 4739682673b9937f3e1e8a7942d2d883
BLAKE2b-256 145566ceaa469db11b6f8fc7abfe74efab3ba3bdc099dd2250066c8bec587103

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210831163314-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 82e3bdd9c0d8b32ec595acacd2fb363634303e1674da58496fa5697297913ead
MD5 041a0d56dc77d8c9193ce97622e10d21
BLAKE2b-256 696e9d645118d92c9e7bc5c7935666ce970039f2024e9a0d1bdbc99dc5203a9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page