Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-win_amd64.whl (753.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-macosx_11_0_arm64.whl (551.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-macosx_10_13_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-win_amd64.whl (753.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-macosx_11_0_arm64.whl (551.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-macosx_10_13_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-win_amd64.whl (753.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-macosx_10_13_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-win_amd64.whl (753.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-macosx_10_13_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 753.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 80cd48a5068759945fc892c7edb1de6a37a21552a19f67824e296d80b6d6672e
MD5 24117b0ab7ad4ec53064afac5be076ad
BLAKE2b-256 af45ce0f70a01c1bcbbfeb4ef7127f2c1c26ab07668d8eba1f5768e2b2c7fef1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 127eaea01336b8b700ad329d9c30599a8140f54c265ab73e82ece2d78097b8ff
MD5 e0a6a20045d2c4e03bfa87b3e543137b
BLAKE2b-256 41d89bb2e03519ec9bc39945ee2939eec98b70627aec89f595b7ff5ef586066d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 055940e1094cad8e65c36e1188c77d3ac9c0f6afd0bc346de1d2cdae017b50b3
MD5 5b1b875679ef8ca6507c72ce775e6c99
BLAKE2b-256 75024bad16a62a79ad773aed71d20186324737ebdabbb6c35ba3c6819bfdab62

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2593d96507537b29776df0f15164c49e06a633f61804ea784773333388e5eafd
MD5 81a6051fc62a4ad7d050c4a514d5f2dc
BLAKE2b-256 cbf9fff6ef7cb4cd7360c98b65945409dcb921b2e9ef7f265ff532ade946a6ec

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 753.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5dc672b9bc2a86d49108fa55f848c189082878a282df0f798e117aca083f937c
MD5 24f8753185ab7ef82d373ec1013f0d83
BLAKE2b-256 67023bf4312f265e9cc88af91345a8a70aec47f76cb99ec1114b7ac0bc404b45

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8f45c6ca0bcf03e3e137af68d96268a746f7d8fc381e23b2e13177da63a54bec
MD5 ac8a9ca84d16167683a54dbe8bbca0aa
BLAKE2b-256 c514bd05ac61f892e52e63fdfe7d8152eb399af10a9a23873a54c4b61ad67856

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25f5d2804ebe602e6c0cdc4b8ae731e6ee7bd1a64d26215cecc983094df05dbb
MD5 e603cea625bbc63db8dcb718e813c6fc
BLAKE2b-256 6f0aa786b4455e5859b474887007a47e033a925e2f18374ca961bd0f28c320da

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 89a794ab320c5b1ccd27c5beb8959d5c8bcd833f85126b34da85caf11fdb3660
MD5 3f9fa3cbd6209fe625ac22f5e3a8189f
BLAKE2b-256 ab044b461dc1c017e7b30cb276be8d81b308b704db1613e23139fbb8d8ec05d3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 753.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e8b33b81383426a6649596459c7c9d3cff92d2b58105494c80a08f0c6fcd7965
MD5 8285dbcb2a44080d97ef2316c18b2829
BLAKE2b-256 27ea0d5abafad7b3b421133a10d588def5f4f9b6899246806c7fa45569d7fe00

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 57aa04cf1902ac647051c1bb85f62f567647a54e21897ddb820fad534e91f061
MD5 1523da5cd539336fecaed9a1ba02cb5d
BLAKE2b-256 b09c1835e9f278356839a31ef6a1a4855a35959e829a5dca298dcb9d07062d66

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a0e3f861a04b55dc51df29ebff3cbc21529dd87ecf2766e4a29eba24a1471b12
MD5 e9b7742ed11e2494434ce84812a7d81a
BLAKE2b-256 7dffae9cab641ba5192f5c14505a2f2b3e5eadef36add92dacffeafe4483e544

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 753.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bf681afd3cc1b796f0c31f329327381ddf885931e591cc3a3035c349ba7ab47b
MD5 1f2e2778908136a4027be515b2c5c998
BLAKE2b-256 0f13202e2ffacfc01fca4b49d4f7ea22112471b6e5d260f918a81fdba822a942

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d50dcf19d0ea5e3a9a0c8b80a5911322c6176872d98bcee392093a9cddd457ce
MD5 07e3ff3d79f8485d68c9d99ca3ecdd94
BLAKE2b-256 16a2d52a8ede06c557d56b5f95472e20d097f45c201835430c9d8bd70bda0fef

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20210922190150-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e60215ab175577e122a736037145aabfa4f8ea9dbea2c3e355d057032be5b5f4
MD5 f737afad94a7d4a3f0cd8e278a814240
BLAKE2b-256 bf01d1e538110a63d23e4778ea0147bbc0a1db9dbecc06c7f71e0217462d7025

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page