Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8e3e4a67309909c18815449d95723f17a450ca8d443cfcae755104f37c5acf5c
MD5 a5200125e62b721a95943692e17d08c5
BLAKE2b-256 2624507fa239e68f35f73ed28d29d9002077fca1bae80c48f16b08435ccb766c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb6e217c75efb42a0b1353c16ed72ef7f4a2148077e32b3c200566f47bb4c02b
MD5 14aa80762f5cd7471095eb6e7cac6aec
BLAKE2b-256 50719881a824d81448d9ffab6141cddc1ea4e842574a4d2a07085883be7fa112

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ae8ea8f33cf80a1d61e4982d33185167eb9612445e5ab360010c1e3d0ea7f26
MD5 629c04c3d47dbed1e3dc36dd4a2c52f2
BLAKE2b-256 8a0aa1935cdf422296f307fe1abc22ba2e416bd30e70a0c911b2819df33cbfb5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5a0e54f012475f24350ccb930ddc5ed58404e146b963e3f5fdc2bfb86d86fd3b
MD5 c9d47569e139fcb2d4205d9ff417fcf6
BLAKE2b-256 c4f1bbac888ca446c25ab9a33902b2ef0a2589cfe2ac782113cac2bc21f9e3fa

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 50698ae6fe3268b39392480ac37eca8bd577399d1b36f1a234cecf29b21ee7ac
MD5 ded3b5cc5b292ca87b8dcae1750047f4
BLAKE2b-256 8f1ce1e7be6df728e9a7eeba8357f9b6520852025b0d0a7c20189926b5064e5b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f2e93c64f3c80848e1b69a30e5c33dee2f25164ff1e2cace7282371a6928b676
MD5 37f893352ffacbb7163126710de541c3
BLAKE2b-256 f4db5beda9ce182d07e2258108fc8296919dd6de3d34164692bdce544f95422c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a72f7bbd971729299f239cec87e50069711a597587cc6ff59ba6a49cc32b189b
MD5 4d1efcc11337f897e79e58a8eeee44c9
BLAKE2b-256 9787920e1932377683a81c5d2c1045a634761dd2c3548eb99442cca7e6c42c6a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 17d0e446bbccd11eebbf5fcddffd5fba32c3b86337b057b9e494152486ef619e
MD5 8321ef7c1285820ee47bfa1302fcff0d
BLAKE2b-256 6b22aa75c82af4cf06d2b55cf900bd7f65da30897739e532f9056c3f30ddbffc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 83f083a2a907c679875845b7bbbe92005686c1b2c355ec506a640dfc04abd7db
MD5 b3292cd93d2d374a3489a01561759f63
BLAKE2b-256 f8cd3c14d4f925aa79a8d9820b89a35d9cdc78473f0fcacfd3d9bf42b920c63c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8678871e33a17ff87c794e7a51a12ba57ce7f3ca427540a682b78ab8c5e3094a
MD5 3c24290f0bf57f713e0b8c2d5119b4c1
BLAKE2b-256 fbc4686461c3fea8a7a3420e630db08db3bc3ad467f12ce772fda0393f4c7bbf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109031024-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d9ecd7d31dcc2f61661d9ebd88cee45c11dc7d3fcc850e2f305821d182276919
MD5 30cfbd0c822d80e92745962ee7aa9919
BLAKE2b-256 d27206c57413eadfdf9f1f5a8fe67773abd530b1c947548e8ace46a996009a51

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page