Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 56bd8daa4bdc957799fd22f0568ec0a89757e141e88cbea70a93e95235fa42d8
MD5 b8d7dfd945239912b5de7a7e69b9f18f
BLAKE2b-256 a1891b1f0675fb99a674329f9f5ef322b2f7febd1a24f9cc0ff0f561a23285c9

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 25180ae631992cc15c5934614d331df107e838f26b0fe7dee1ab5fd1dbae0583
MD5 722080d16e72f75ec4c6fed83a824cad
BLAKE2b-256 86c7658493e1340cf3ae6b6521dd1ee1e1e9fabd11b4716e8f98da738341804d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 51a5639102f9631599a4e2ecb079a00e1bc45c9db0825a50d8513f9fc140f855
MD5 99c8fbf7e230e31fccb06c2cf56f0367
BLAKE2b-256 39d1dbff4de669b672c860d4b806d32989548391f9b2257a4e6eba3e3bb006e2

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 45abacfd7f492f3b03597cd0d657b751fb6dc959fb19769d32153186c43e7446
MD5 4c71ddb5329f8a84c84cc4cb4f6fa010
BLAKE2b-256 04853b8daab06a921e5d59da0dc8451f4fd163d24ad575cebb188d2502efff37

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 657528307d416f03cd00890a65efa3083ec5d4dfa2333f98ed6cb1f413f2bc47
MD5 62418aa031991219c49a94e6bfa38517
BLAKE2b-256 0679b2c9721b364685ca38a2f978719104ccc971391f7b4d2065ff5488c444d1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dd2edec421608c7f9aa888eadf260d7011325268290def417c4f944c64b02815
MD5 6a9bbe5a39ac4a56416f518e711d1344
BLAKE2b-256 e919e14d03c513f29aa38a3eaf8d1caccf894419067bc08cc5a8ba0ccf7e7327

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87690a3b4054c84b1262ff06023036127d1601470470ae2730df127938a689ce
MD5 273aeb6404f84a1cac47968131c5125b
BLAKE2b-256 cfcdcdceacfaf9f537e6ae0b83d26a41e87b9cf9256321e27a316cfeb0945f8b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ed65aea225f1c7d66607c28d75c95266378cb3838f9b509a1d619816cea8a05d
MD5 f93fea68504bd9a402641d549dd23f51
BLAKE2b-256 00b1fbee49d12eaf96dd0c5078f7dccaa9b5736149ac4164a3203f9e726a9304

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 20cf5ae50e9dc7c8c307036693716241f1eae39c0331a6f9e55768063cff30ae
MD5 5caa1fe9ec280ee51743b30c82fd8161
BLAKE2b-256 27d52c3bf5fa41661cf09ec2b222f830c2f07ec49e92c69278f40d95928c1245

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9e7f72b83bf5680bf400188e078df633711f883d7e1ea1a2d626113208b42170
MD5 d9f2da4aa7a7c62b7960d5cee99dc604
BLAKE2b-256 b154ebd9767e0dc3b325e5ca25f23e30fb6be3d354a894c3d063bff2c2777e7c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211109221423-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b81e30764c6bd5a2be86e7b2326acc080b6bcd67949f1dafbce3a2a00d666af5
MD5 a276f6ecfca69d865fb706065e262abb
BLAKE2b-256 90ce3f099540acd3439eceb28d882700d0b63910d5f8a9be6231d79e3ee6ee05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page