Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-win_amd64.whl (756.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-macosx_10_13_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ad3524e5010a7cc937c7f5ef1536274b5d9b741187d2eaf7de99050f29ff024
MD5 8ccfbd48d1ce1a679347f0b3d7e3347d
BLAKE2b-256 8012cb9a62270ffb67ddc7596c402e97ed854668bcc20731fe135ff223e290a7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b787cf72878c3b5eba445f58a4a026aa8343488c216d83cf758f400f5d64dc02
MD5 2c4df03451ccd943d16c01669d65a6c9
BLAKE2b-256 be51412d1c81de4444198ee6537d66083e4a6ae02d433f6b9a66b57a8dbc96ea

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4f327102daa85d5709cf5a723a62d5d8e70017847a2a47d4b1e02c7d2dec49d
MD5 6950f595abe3f51d862b79b21cba7a1c
BLAKE2b-256 5b117d3e53f20e49cb208854ecd0c4e4e0d2e586ce61783d01f27784fb181927

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6f3a8411e7919d150efcce711e50592cc66f042837905d61cbae680cb4600863
MD5 f237b139ff606878684122e7005cf9b1
BLAKE2b-256 131a9576b7a1e057919df9cb65f67105928ec3f0ab08f60dc6ca47e76a9c92b6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 12314c43b0b7ec9b5ec221acf346864047d6ff23bd799e898a8eab7a04c10d64
MD5 72b35b27411eef94f4812e471251ff61
BLAKE2b-256 67fb4eb5eaf738a76e0b0d1f8f9cf112814fbcdc43d1ff37172f5be3d89a450d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9f20809c432bbd3c5868121392c8f3a2ea9671f76ecee92d04e85c2442e8272b
MD5 44a9a56c1caa5a8f5f73de98857d3685
BLAKE2b-256 0ff9aff1c6bbc056798c0603e22eb1f0af425ec9cb92cf90bcf398b750d1736c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3cf79d6bd69d01a5d335808067ebd07f4eea59e76dd50e5843eefc47d4bb9f5e
MD5 f487246936483a607dbab0e36e2ea826
BLAKE2b-256 1c4e7e80b7ed4666cca660650c25898ec3dcc64b568467d3f2b4fa60e69788c7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ceffded239465accf26e2638a75d9f14ed40e54a83a74719bcd1bfc21fed60cf
MD5 2a90a8b89646982cb94de189fab7f591
BLAKE2b-256 9dcb340fed80ad4fd730886f2b16e3f425010cb28291463251d61fc6ba8e7bde

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 756.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0974de6952d784d938cc1720e7b5e72b5a6e8fa8d45dc00b49db5d7fe676224e
MD5 ce3a3ab2aab9fc6b88c7888727bea7da
BLAKE2b-256 501a93cdab4b22cb0bb70398a662cdf30cd7c584526a3a56e3c446076e32a7a4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bc540ab80214e26b7dc4e900991b4bddef0a18f887bab2a622eb89a0096d7d1f
MD5 4efe1c0b35129ac16b4f43cf0753400d
BLAKE2b-256 d341c85f459b07f1c2c00e6f6f5d5c4aa3567be0e005a0310bad177f73b600d7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.15.0.dev20211110024646-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 26d550b7a9717c95c19f35e0b7c2d11318630c498ca55e29d7af64dbe11ea4fb
MD5 14d594e32a41663f4f11226a7f81d705
BLAKE2b-256 a477c8307a2ad30a295affd10b8ee06dec60c4c4dac71c6cede2547f67039009

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page