Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f0a050f0dbc7394e795b6020c3098839de4fbb0df0610ce4597fc104fe84818b
MD5 2e0abeabec8ae8b8406dd07f5e2036c6
BLAKE2b-256 56b532aa5a2825681074fddb7e8b8d6160734bd1f8ff64f89dc078bff01f2f2a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 353b623d6853aeb1706d5610cc0d35e208f4464520ddd3f18d0b4f46ce8281a4
MD5 6480e3b16001c8ae52f40a7a5c83adbb
BLAKE2b-256 e362bf90b3c2f9562951a331de12b097f75bb1c0b751cd4bb62fed16f8b866ae

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de6b363d4ae15001924c87b8e2fee7722879c610feaccadc9d601f99470cc127
MD5 c701a3f0b4e77effb9a7e51a96cb1a29
BLAKE2b-256 bec36b016550f9af02bce88ecfd003b7672f0fbfcb8fdfc65a4a2238c34c7140

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 81ba8ccdfb3e5e82b9f2f958abf571f2e6dd1f00dbd8ba72930b6f06f7dc310f
MD5 2a56f5f41f65b4050527630dafe7fdb8
BLAKE2b-256 d3780b661e1d5269d1e93271e16387eb8c87dff3e9095b241c99190650bb26ab

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 828a11cc9c4605fc5b7317ec4a5523c9e4b987a4232979444ba94111579c6a0d
MD5 032ea96cc52ea4381f0129ad7a56cbc4
BLAKE2b-256 eba0960efe322cca23133a253f399e01ffa51f5a284bebb9a4cbed062f7b88c5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6eb9827b5d8b8d52ac5789b147b9b23fe319cecc8018f9106d5aa5a7bf7dc2b2
MD5 7998d36af18f079305798a0a1c8490b7
BLAKE2b-256 67c4d2bcbe8486d8f3d094ecd8fd7d2171ecf19f886541de44ee74ff92cabe87

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41eb950ff3a31ac7f62e47e1f54bb5867cb8b7b88565d5513ac3947f62a262d2
MD5 66af7f9bacdbfc51ac3629cfe1722606
BLAKE2b-256 9729a22ede55f0396002db998d6529d4b4309c0e90bc5f9be8afd8ba844efa0a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2e766b8ce5b96fbaac3b9250bd3f249770a7384426b2ce758a423c02a6f48388
MD5 7e35a59d16de344d1721045b34e333ee
BLAKE2b-256 3ea7882d724ac0d9fc27174c8b5ecb7a817d1a83ba2e2ed66dcaf5a9be85deaa

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 13baefe2d274f5c664a4f7fc63bce43ef5204e1db091baa05a4f0cc47a0072b8
MD5 0a1276a6834f880b94ba07d01c2083ab
BLAKE2b-256 c31eda2cd3c712714bf73fc0b9c9d43475f6a3eaa4a63091a169246891c0f561

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 927e8edf1f3e4490ef0f1a7cac8e51f0afef1abf01bb2decbe782e841b4bceef
MD5 da95478220bf1400531b31291175cc9f
BLAKE2b-256 e13561ae49eb9db4a7b9fa9b0dbf21b1ab42a0b43cab8ed140bd7902e0def860

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211226235254-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3c7c38129c3816f6f59dfa6a38d49d9983b1c2ca8a41b9db94f828d2e3caf8d5
MD5 acb0e7ddbc38c08624d30a24e087268f
BLAKE2b-256 efceaa8bd51cb246fdd5df2ceacb17d24b3f587bbf236e27ad606919c4af01e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page