Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ee2f91b4e612ff277b688c78018d12dfa780f4060e9b91fc3fed86356f36800c
MD5 3d0a4c0d94fb90203103e72d3819134d
BLAKE2b-256 cf1bd063b434c5989908c34449a7780d6d3469c367a841b4665f4e9e2e12bc78

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c106f4fdd8fa4b40b5cf6642bf73ee6a9f6ba29870e602c822d0f9bc2ca537e
MD5 2697c25877390971bae644d68261e45b
BLAKE2b-256 30019b575bda9b7590f86b752e620e1ecb9f73530ff289ab2ab4988314fe8e09

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b209c42b0b0a56125688306a3f0a5bb893d6153bf6ddc58bcf710b45da008e6
MD5 9ec1c424a9d48cf655c8b8a79b2e2051
BLAKE2b-256 ed3772aa1a58283ed2723d53bc3909197703d9f1448dccbc0638b1782aedf1bc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 989f109157d5fa1cf909d6a5a246e6b3ab6b124e1a8029d362ca150a7cc85faf
MD5 cc1df26e91ba4251f0063283178ee21d
BLAKE2b-256 d3f75f28b3d7b5191810707a7d84b7efc624f2c03bcd46fd4c5949a1f9251937

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f0d4388be47e36a20594b6eaa78bec478189ec7e065ae42545726b20156e071e
MD5 043e5189abfd80e5c6410b0a0014b76a
BLAKE2b-256 eb2772001cae7dcf1ca15fed1ee3bca68d3fe4165c47db3b7034ee50bab8def1

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2826fb59bf96d9eea48a5e85b3e4476974ce7cbc76874d0ea4f0b2eb6da9337e
MD5 465bc3b598168a5b551ac924f27a6616
BLAKE2b-256 385d2bdd4d88bcc61d1fa102e185ffca91ad57095760c27c9776a4519a48229b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2a9119723ae1b8c8cf9e558a05f2361317ae59de756b8497ff6265068901e1f
MD5 dc35f12ef7b0031e0d1be46803de9866
BLAKE2b-256 e1f4e758f06b82236a3005bbfb696df755aeffe1760487c6b4420760baf0ba3c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 16d1500d1893d69170bd993ce65898bf07ccb035bf4bd9c88c5415b031795f1c
MD5 f5eac3a2d643250d8ee43400c03223d3
BLAKE2b-256 8096b840ebc40dbca94155eeb44426e93c6ebe3859235680c8ef89902804417b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb513481be32f5fa04ed5eaed0bd9720edd5fe692cc64ad0221573020d6e1eca
MD5 e96972952f7e88c5922699c8af9ed3a3
BLAKE2b-256 469e5ad169fe6f9a4b1e25bfaeb4f6e5ab0121d28cbee79e6554e277b31a2bf4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7eeeeb61bf563a09a2aa2834e21bd913735f1cb36eed8395e8ac2f7f77788424
MD5 3d2c4b97f5304b6efe57b931fff4f56b
BLAKE2b-256 dc9d4f4a6689822967f580c216cc6fc71424dc1bf2b4fcdb53c8bdd6c1209a70

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211228035140-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0901e137ca6a330a972a8543f64b5710b9820aeb09006f2a386edd41aae952b0
MD5 15c610466161d6d0c1e360c76529382c
BLAKE2b-256 9177131aed2783f482dfd1f703dd46590386bff3a0cd9433457f66a3171156e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page