Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-macosx_10_15_x86_64.whl (587.2 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fb037094d64a6da98a65ca7cff27b1be51e99e21ee0ad685fb02359e514e093a
MD5 4b5c7a8fc871be39e6096edb8c52a93b
BLAKE2b-256 dbb76ba42dbea2f6b90cee73bb42fbb32d4c1f26f2747639d9ad609a47e26390

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 516dd53b2792caeba23bab6cfd2b8aa9e757b73808c2a2ba169cf7cb775b223e
MD5 8afdd656f6d58d69cbf0da65392da80c
BLAKE2b-256 ecf974edd1b7f3ffd9e8b72c3b22446c277b8cdcd2aa719e902d18587ca65a0b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d532655603690cf0b1cb8723053a4850428c5a28fbb93daf04f1984140739f97
MD5 929604bfa8cbc69a421636e01a75bdbe
BLAKE2b-256 368f09a1da19e67dec7aa747969f5d2b73b6dd823bd6f2a7bd337921acca5cbe

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8a3433930ce3d25ca0ad78e2b860a549a75af37becd5b1e0dd78a384f2eb37f7
MD5 12f5b859ef253148a0288013ac49de66
BLAKE2b-256 01003e9d2a8f191cb90b2b33e44ecfb19289a23edc750bba2e703353c30d8a7b

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 05961d83899d77aeeb859889b855fe97785e98db8ee3457e82c9d082dd907b84
MD5 0cdcd8d04bb2475e55282715dfa0b7bf
BLAKE2b-256 310f4b095b8209875433bcc83d4f1ecdef206bb7d54baf9e38e352ebdeeff623

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3e65fe95fd62d81f7c4406b724c6f8ff09895d764ab8e05fe0afe7e75f145cf
MD5 316e0758cd6f352de308064a172b7d81
BLAKE2b-256 5fcfbd2fe19a5583ce2831c5731694177456fff6195669f58a66a3e38f5bb7d4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ce0bf010bb189b68aab04462ea27d682a760219081dd7a6c48762b3a6efb4e7
MD5 38f7538767e156521679cc9e83920999
BLAKE2b-256 9370bc4d95edc3c8d36d388ac91d0ac0310f6e95fb070a91fac3e3bfcfb1d639

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 695d47b2e80e79bbac5a374094f723f84462e7d92d5d6ac2a2bce410a45984f0
MD5 66a95e93ba76b0005d2a4d7b04563fbe
BLAKE2b-256 7b3e6f88e45d9b8c652142f476fe0df3ef3947b4a4727579d2fdd81557940927

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f734d2f35e55e50e7e847703bbeba6404064e9b337b3dc793a893ece1d3b49cd
MD5 781e3fad5cb5a8be3c95bb3694d2a701
BLAKE2b-256 6821e18d5c4bbc750f78633d35ea3757e9f9722ce9a76c8da513a24e1ccca5be

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6bd23d8eef8db52b46614f552c40850f47c0e491e88e9ac9bbf7bcee8b1f0d84
MD5 bdb7d87d8ceccb8c5feed16abd9465b3
BLAKE2b-256 ffa5d3cf025f4792d226e60b1f7ee3b9f31df84fb0baa89b37d3c9b7f1803207

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229190346-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bc136c55220c06b19a93b2a258a83a62411c1058c162154bb8d80e63b889a3e8
MD5 a6103dad2e3d6d292291598b8f67e33e
BLAKE2b-256 387dbcf70d03b238f76654ce40a8907f4be4bd170b3e808b51caedd4a4e2a06d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page