Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-macosx_10_15_x86_64.whl (587.2 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-macosx_11_0_arm64.whl (549.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-win_amd64.whl (758.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-macosx_10_15_x86_64.whl (587.1 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 98d4576efdf61089fb1e564ade49d6d453b05f15f237c32da0a1e972f7e50052
MD5 c8843190b02af28656998a09bb7df293
BLAKE2b-256 b49802db8e6ba62fac2191e6e5ea6a6dea865eee582633816d5933cf40e0a887

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3dbf5143fc69b20fb3dda03e56811189cbdd03d7874b5ca2e87ada46869348ba
MD5 49804b67689428f9cd7f29835772d6ed
BLAKE2b-256 48377c5bf09790e397dccdb222cef9ab201b059e1a16bb5bde9de19315db5baf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9075009d6897a556d327f632ad9ad28d9da8b4a20396e4d4cbc79b9cfc9e67e1
MD5 eebdaa165eb0296d8c0eeb86d9855535
BLAKE2b-256 300308168e93c0787e1bf07d86a9f3904f0f60fece5580bb094b1d99e1a2c463

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6b271bf5bb3115cf30d856057cb8d13dd3222726267b7a49b1b8ef2bdbea7e6b
MD5 893e8470cbbbf337e315edac534b3dba
BLAKE2b-256 9e98d4db22be7e2490bf109c6306baa444e1e5e8ad1cd2971fdba315be44e099

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dadecdc0d3bb01a26f98a56f51e62b6112bb2d9bfb86f64c56fae3b948b49afb
MD5 4b2a7e7ef3b1b07ab3511c6b63ce6c6c
BLAKE2b-256 e85f2f22d87b34dc73401b326d022946ae67b3ada56793b8805d415113b4bf13

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fd07e64ae684921cb2b2c631bfd08ae76fa827ceb7a4b70f6c1395a8dd4dca4f
MD5 95e0b8ed83ce21313af6d7152f53e026
BLAKE2b-256 6cf72639c0f7e64e9088607bd79fcde6a72c4662eafbe0acddfc60381603b6dc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b787c0719e5b62281569623b54c811fad3c81f837d43deb745b81f83f2467a48
MD5 cbcb994bde63059f57d966f4aff974c1
BLAKE2b-256 c6676c1c4063deccdfbdacf133ebb378bc61ac4ed5b608f2a8d1e35e10a55525

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b8b7609c15f1d8cd3e65ccfff14d2e68db20b7ca18e0a500a57139a13bd86f4d
MD5 e40563520d9ebef5eb236319a5fff2f8
BLAKE2b-256 adc5ef76bec46e5ab0da3aa4dbb00a4fca0f705c501b8b24037aca291c06ba67

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 758.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 848e9e9c93f2f77f15d5fcde4e53d621e265dad838d728863dcaab617c4fd5c8
MD5 c65ec631e16963279c8cf6f9b8574a73
BLAKE2b-256 f1eff86ddda32f9ba093ca25dfeffd3aa4cab6f121b224c3b1fab159134957c6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 59159eb480a1fbfec32737ccde2cc819f8a74439e60e212b5ab7f6d1f274a1dd
MD5 fa969d65f0c0fcbced50ca3b6fd49801
BLAKE2b-256 97bc60abeac818e02c3a06e7f8e44bcb6966977d69b79ecfabd31bff255204be

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20211229231034-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3a0b28e61468367d85c1133f03a8c57d61894bd45d21a032cb42f41de782b64b
MD5 ee57dd5145cceacf9ea769712cebccbd
BLAKE2b-256 be56f04e2c3b0498b6b4d46829fa11332ca13840e6ae13e2d02419986f36d811

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page