Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-macosx_11_0_arm64.whl (549.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-macosx_10_15_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-macosx_11_0_arm64.whl (549.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-macosx_10_15_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-macosx_10_15_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d4ab5ac29724a5ae3d0a314ea755c0be714f2a5e6f6bd529f343a4dcd8838c6
MD5 20b381dec56f0143e7ea5feb023ec881
BLAKE2b-256 2e452bd12ed517e3ac4e5f2fd6f46e74c26c775c7fef4fd1cebd2d834117b15a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0160ddbc8a31a7770471965ca87a7b747b69a6684ecf121d100f1587752221f8
MD5 1569cf6248a6940c4696b6f2543ac2fe
BLAKE2b-256 1326faafdb2d7b8bb6bc02a0832fcf6f3dea0f26848a0164de28b337c9645914

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 825a28e55c6ccddc5b6581e2b8c92385525b9f0d4129b64aa90d2362e4f00aeb
MD5 d5c67b5fb7f647981f1e9bbc88802e01
BLAKE2b-256 0752495899cbacd4352f0b1e0ea09cd2197f63c2a2dc7fb1ef87de64be5e7bea

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a7d581de180fe015adbb940bbba1f165047b0c425fe1325e3a9a84ce691a678c
MD5 188d54f40a8ecf29853fdce4df734c4f
BLAKE2b-256 71c759c21ea74d83e0eef9af70719d6d16b85cc916c2abaaf27aed77fc86d0d2

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ab960f4848e1a65e4cb166387a8086f0932bd3134405c6105524af7694066a15
MD5 a85489174e7b19385bdd53c07edcb0ed
BLAKE2b-256 b8e75939a92a5b186b442045f0b351fb770bb02b56a660d7b63e8c11f298d0e5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3e161dc05829db3b9a28cebc091a0c3927179a407486bd50d4f82ca01e8030f8
MD5 05cd544fcf0fdfdec104552076493731
BLAKE2b-256 df135001b22c7022c4b3082653aaed1fa9c52e66304c73ce54444131d1a6850e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc4a39338f4064bdc0d745f8595360d98b047e3e37205334c35fce4663b337af
MD5 b67d972d34d08e63363080dad6479dbd
BLAKE2b-256 c25a5c68b5f9977d933f9931ad3b0f8cfe1542a8ecf694363f40dce5a7bc9171

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0549367c821e43a284f39406bf684160b3c1148697aec48c474cac92a1eda76b
MD5 48984f709b8ec63e797a8f5889bb4bec
BLAKE2b-256 da104c73e19cec6719789fec33f19f49de3f27737e85b89ae8b6d367c0f96ed8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c1efb768511c464ef08b57d1d77e0439975f7e2b6fd98b0f059540180518e17f
MD5 54072be8663e10e2f7e9e5f12661187c
BLAKE2b-256 87a9f7b7531f20ae00ad0b9153c13348c14acf299b45105463d262404da58bf4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 96c1c345c7d1fb2bf549a16f70479d1c042799fd77815a41aa3bdf74b15a7485
MD5 365d07236f08dfa9b1d3d0eb2e3229b1
BLAKE2b-256 31e1d04f1f1b352f25ad5f44383485726479df5015f02d237305cefb617b75eb

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220103155136-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6e984da3df304b7b822a11fff605c25cee6e04fcee1bbf46cfe0bee3a2f1874d
MD5 d6ab3a21b90cf78a687eae80fe9a4f1b
BLAKE2b-256 de1e0516578d38a0cab24b8b01f1dbdc74df8e983c80f135e40794b45d54c476

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page