Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-macosx_11_0_arm64.whl (549.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-macosx_10_15_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-macosx_11_0_arm64.whl (549.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-macosx_10_15_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-macosx_10_15_x86_64.whl (587.6 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 71b511d40bc386a42d8e33e289e8bd11fa5758f30b56f1df5f3a0343f7c553cf
MD5 24740326eaa5de7a9f40b7d2aab6429d
BLAKE2b-256 2d5d9e62faa1aa9e54b0622fc1852d580cc87cd38e06ae11aa6e6adabdea590a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bddd74e74e1386ea11033d37e992286d2dcaacbe6923fa3b82ed3cb074835fc4
MD5 c22f943868f222985b24246d7d52b3e0
BLAKE2b-256 8764b11ccdbfe70401ffda27a002a075e01efa16a2fe29c816aab015a77fc4af

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f91181e5b61438224b57ce36eb5da52cdc2585876a9608a8c6a624303a8a3f4b
MD5 b73d9c16c0b049c5ae808f9c4464ef34
BLAKE2b-256 70afb2641e254688df9ebc840dc79fc327b7c6d62208429828089153340a5aa5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 460c677401f7700351210dfa3e027305a7a60167b01c4a01600ec824064b1814
MD5 32a4721c4f45e94c8fb0ab4e2e7c19d1
BLAKE2b-256 bcf44f1e9f5457be98a4acf97f20ca3b5d29cad293ecbb74273303aab26522be

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 64d62082a90fbb7fd561826415d09d1c55e8eb9e5bee1cba092c139c68c170ec
MD5 2c44efa523a4cf31b20edccb48da8574
BLAKE2b-256 bd66b69934155e47d48afe7e147053352c42abe60711c82e6520be6a5d41d06f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 13b517bc0e66d204deaebff40394f21b8ba3305e44f0caae53bf26fc3666d407
MD5 0fcc8bf3e3271b67271338df63ae3e14
BLAKE2b-256 7952fbe9d6a4a35de3d5a3f00459957a83a5fa0c291e058dd0a2070c70981c6c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 490f4993e1d6c685dcdd97757a382a374a5382e6519adae7d42086317a5d3287
MD5 7ad2072a2427e66e18c2280082633ff1
BLAKE2b-256 969ba765ae37dbfe36c4824ef43da52f53c9b26e5a94ed1cb7f96f2058c52a0a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8b54d6e52cc957d571dee1ebd17ce21b0d8d61ae38b4958722f13e20d35e2fb9
MD5 fb3171e060f5b316fd80020799b06b00
BLAKE2b-256 d5c161f6cdc1f09a0feb92248d332df2119542b7735468e3d02e31cb06dcffeb

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c0936b3e98dd773663e71e5ab3df954f9b43001ad1ef7f1b8bfb1eb46192b7b5
MD5 fbd861f32b7125b6b6be33b6e6f08347
BLAKE2b-256 31e07527256c40731f2db2e23fd101b2e74062f8404c2dcaa242c899b48e3112

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1a419c2d8025c9e8cd927c1d749255541c8c8cdbcb7e003c2ba249b251198472
MD5 eb4b61fc0b6387aa2be2b73cdefaf974
BLAKE2b-256 ff806f3af017f32eddbb99b2b6782ddc3fc661b3b57922451cda5b65d64b233c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.16.0.dev20220121012501-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 26e18d0ea5db3bd1797054573f258f8e68ce7484b7001866536f3eb2f78940b0
MD5 ca6f58825b63b7b522a3745b19754486
BLAKE2b-256 d539c4e8cd267b5d98b6a425e1acf4a7a116384b426e12640abd24acec4c58a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page