Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_11_0_arm64.whl (548.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_11_0_arm64.whl (548.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_10_15_x86_64.whl (591.4 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 18dd399516fc2cfcea832e0b43448fd242ad1110e3fab8e9c9b5ff252ed61da3
MD5 62fc5fe8b4222bf59b090f94a82895b3
BLAKE2b-256 54446294a2a144f124855f1ef420f1fe896c3ded735cbad8812c46068c706181

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e8a3425957cc48c68c4c564cfc92bd6f2ecc15963b9982f0936ab4374ec19ee7
MD5 7de37a3820776ff4a9f795c33ea722c2
BLAKE2b-256 70d56cd864937d8c1eb319c8e6dd0cb3369a0db263d8feb16813b99f07b03b97

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 46710432486bc579844d01c5fdb5af7d57d73a0e6aa98e217d956761ff02ea25
MD5 0f8986a82ad027fda12b9b05ac647831
BLAKE2b-256 4d56fe4e38d7642448c9bb21f698ae1e301f2997840a3ca86cbe178df9a0d7a4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0fb733636c1155c6d60c1fb74ea59c687c25ccc47cff56a849ff30a008757f53
MD5 70375a8c0681bdbefe5540e4eb62bf75
BLAKE2b-256 2739a138249641e273577e7b1377a3343fe3d34f61ac8c1ba5a6f264f7ae143f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a817e01115b1acd138cc9951f57f80366e51af6ac3b6bf4170a2200ee0f0da8a
MD5 350a221cc3b7375d6fce6daff5a55df8
BLAKE2b-256 2ee5d74166e9e2144c369a871fc7542854dbbc5daf6c69856a9583d1ff5661bc

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 548.4 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6d8b48b08e65a195a0fa885b9ba026043cf51e4668cf990dfe73b9ac35cf33bf
MD5 72e1d7479906f63db96717f4eed4946e
BLAKE2b-256 a14fb2a0736734d33a67a560dc09fc0ecacfefe40117e90c43c9a1344e35fe21

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e30337187285c16e9a4e1deb9c04c0872aed8e0a2d8d2eb904d3bd2ef4ae0752
MD5 4d1762b69f9b507a85a338b7f9f740f0
BLAKE2b-256 c6c9945eff114763183c076629633a4255d0597aeca769ceba5ffdda9ce91221

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 772d79375ee01a12a3a6c5aed75ee532319b82c31af99cb56c2efd2ec1e2514a
MD5 30810f4ef0086eef101fa07e2e3a8fbc
BLAKE2b-256 6f2744f3874b8dc917e6911ec20cc58d99aa74e18de3e51e144e3cfd9bf62a5c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7aa54d65dfa761d9e687ff14dd7f7b89fbb3b23c67792b6c3e3a1b22fd77bbe5
MD5 244f382f98be2d0ca7859d9a11db4043
BLAKE2b-256 c85ac54c0d052087fa28c27c1b190c442184ac5204b4be31d482f42c20a646ed

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 548.4 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b05f827dae78126105b9013799a64a9b914509da94312fb114969a80f336c6b
MD5 bb6648f01bfd64a8529545ee1f48d5ff
BLAKE2b-256 cc99b94f003f488f8ab5a87496929da3b6846f8ce3c4ce36895d6a5a08c33773

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.4 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b7c72e6181ccbdfd8ed4f9d392a962a847bd80faa9d54ca4bcbc90ad284543b6
MD5 49fe7eb049d62e498e48084708ca0f03
BLAKE2b-256 eafb03d632a28f9756b43e16f9268d23d3aad07b775a32cab820071bc3480f9c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3c5ce0176bdb7279f40de0716b7cfebc8c16b3cb9c61d8302624e8ce944abc3b
MD5 74d6bcbba1c8767ada1526eb72e1b79b
BLAKE2b-256 6641a602deacca0cab88445a188e857120faf8606430292a748adda7597d69df

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 88ad54d938c42b443cd6d952443d8f341766ee58590a96742cc886ba45982d53
MD5 78738d7badc56a03272e50f9b46d4b7a
BLAKE2b-256 eb2f3cd4d536cca6c82ae7ef9bf7f8db2ebddacb2481b57faccf9e2fd69658d6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216000025-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c79034d1b3b1d698c0ba379c3dc55afc7b5eb8f02a29c805ce00c537b277d28c
MD5 005105ec2cae245018135ca815a08e0c
BLAKE2b-256 848f6d477433b6e7f7fef01691e35ce5f943487d79134456faf5b30e1a82321a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page