Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_11_0_arm64.whl (548.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_11_0_arm64.whl (548.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_10_15_x86_64.whl (591.4 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-macosx_10_15_x86_64.whl (591.4 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dc8549b9c62c6411a75f846ae949cc3ae938b86671118089356af085d7de209d
MD5 52a33d6776f82d775c820f2a6baba6b2
BLAKE2b-256 84ea317cd1e61c833b1f0bde015d3c1c1621468f13fc7a629f3cd8034280b91a

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0cbbfbfecbcb2b013c8a23ff5efddfaf6c5fdd5f1821c19731be1984bf688890
MD5 10dfe28bc559d49efe5a33f12366773d
BLAKE2b-256 f76c65311f1251e1f52185ce686727a75d8991b99b6e4bc7986aab3edac72437

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fc6dab5512a2aba07e666eee41589ebbcbca41dac79d3714d294f2d79e119577
MD5 8364c57988bd79936f04b79ef4c83490
BLAKE2b-256 4563c6506fb8055cabd78721a502df83569c1d29d56746b1ed62b6bea5d92d5c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 788acb25bae0fdf0e3834ba567d87dbda58f2c30faeaab2eb06a8206f9ba5056
MD5 a0d25a5967602cb5af1c1d606345491f
BLAKE2b-256 e37dcb5528ae09509a3ae7f7179bee19a027034355495532fd1c4dcf5dfc1695

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4ac6a67160cdc1385ce4e94fa369b42767f99a1ad76eaff514cc23eed8d89726
MD5 c28e670bc0c51d1e2a34c7e0dd97b745
BLAKE2b-256 46bea89c7695254790e946a43feb21d1c8b59e93d1f2b57665f584b9c1074596

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 548.4 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7023e1dcba9ef0a6716f77fbbeccc724fd1f7de0eebe29e8151feb56688024cf
MD5 33f3ab44a2faf0f0694f16b14245e5e6
BLAKE2b-256 8f4f7bbecb011e6bf39800c67b14674f83552718f10434f94ba999b52a9f14f2

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b21f9e39f757def1f76cc9383be72f503ab3ba1b8d7d721b518a614b3d1b3f4d
MD5 521e8a0a39cc35b92b45deb724ed5c02
BLAKE2b-256 0c27343788ebec089d7001fa1c778622998852cd334bee740dc05bde3fa85b62

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 11984dadb7696e0890c54f828f555d2b7f7508ffcde34b2fa8d95c6d59a92043
MD5 76ad62541bd2e76d45357fdfa20e062d
BLAKE2b-256 74bad1b297d78176226aca528eecd7dff1dcbc61ada4e37852fa120157c094d3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3397a4e193e57a479387ae4fe8f952df3f9b991ee8382cb35daaf4037364bb24
MD5 b5644c8bdc2ae2982a0705ddd5a635ba
BLAKE2b-256 1e0eb0819213d22ae8d5e7fa1745dd2a81a2cbc83795c9aa79c6538bdc2d5caf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 548.3 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a67eb6aa8268edaa2824aaff8efa45acfe7e434b8945e46e9a0a3b98c00bdd8
MD5 27df0600c672590fbd3a6d824cfd8b3a
BLAKE2b-256 2493bdac189188ed18927fa6ad7d00220cd2a591320679fc9e6398c6528a4b25

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.4 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ef2961f7871ef27c8ae974a9cbf339c60b1384e7c6efb8617cf1f5dc18915e30
MD5 612787e340162a95ee0303e7ce3ab55b
BLAKE2b-256 d8d8c25fdf11bc48c25d4c3776de9f848bc0eb5331aa80af4c596beca274d26d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 12c3de7c9416d801d1c1f93be38eb507eefe71f8ea641bc1b1596dadedd2108a
MD5 be6eafe30cbcb2bd2514ab6e21819c8c
BLAKE2b-256 eb4a4b9524a9b15ba0132155440a184d51b2189234f0b8760a1543ecd11f0da5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 009dd3b11762c15c2956e3da339331e07f557b32be4ade5c584434ce12cc96f1
MD5 2f219e0942bce3bfd3566c462e0427a0
BLAKE2b-256 28d6675dbd5d02d287b14068d54826958f02d56474a7e857511c0f66ac2aad38

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.4 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for tfa_nightly-0.17.0.dev20220216010357-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 585341c53597b238d5e34ff6822410749bc55f43561d4dc442009e51fa97cd53
MD5 8198e91a111720f421925cd9f9cb1fbb
BLAKE2b-256 3b2b39f75783749eec61ee31f26b4c3b526f9c62f8b24179905ecea3adb7d04e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page