Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-win_amd64.whl (759.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_11_0_arm64.whl (548.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_11_0_arm64.whl (548.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-win_amd64.whl (759.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-macosx_10_15_x86_64.whl (591.5 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c068210dde1f24b853efe2e696cec660d8aaf646e62b5b5293446f4c5e120b3d
MD5 017b04c498322064cab989da1f32f529
BLAKE2b-256 cac053d44f1ebef7df05ee7e77a06bb25f15537f2f76201a6b41c2b7e37cb729

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9d754ff64c8b09f21659d0ba3bdd7648c67bd8cb4f1127744be1132426d7881b
MD5 3e7b98b04580f3acca6c2b0d83f6e47b
BLAKE2b-256 2b89a36b06a17dc5db5a913b36852278996eb6e036bb1d23b6995a451f52f5b0

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ab3cbafc0db268bae89c60928c82e51adee0b42728ba010c80f1f6d7f4f692a6
MD5 31938f6e1b28ac7060180aef5efcdac6
BLAKE2b-256 ab166cad58a25ec2c96e581961318e7769aff560a356dfd3cfc1f040b60d314f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 759.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 16cac6a186c84a01850857c11c3e0878dad4eaa97046304708c541bff1ef88fd
MD5 54ce4f17ed6764d60a4767a0a1e4f228
BLAKE2b-256 71b73c2c274dc64d6eadf59f55fca033b76975963dbdeace7c9d5749fdf21194

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ec5b6fe1000443a10ba40a489fc20ea412a9b14be7a4e9f3f08ea074a25081c
MD5 4e05e60bffbb29b24ee1cd4daa79f1f5
BLAKE2b-256 314db7a1ba4a7b7f41555a32fa1ca70afaaf40e7dbbca0fd06035495bf604be6

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 548.4 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4940548f687f2b6bd2561c42197cb5e033a4d759ed51fd470f9f41741b7d04bc
MD5 57cf683eb7fa380147dcf1421ad52b32
BLAKE2b-256 0aa8c97fdf064a708eee2903e9b168c0385b68bab5067cbdf6ac96d1648d5230

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 32874679a1b1518f36da8984585279ce12bc9f758b90812664b06518dc9c66ca
MD5 135a9c16351eabc84f5f79a8bdf53c94
BLAKE2b-256 cb28f5ed092adab31d947cc30c96ced4acec7a51c7d6e6048a187170c2844a44

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 84c72997955356b89a0da4d0742aa4748bc6f1285a20d9a432bbeac544e0e05c
MD5 ced03492d34066464f8cc3c1d1439a1f
BLAKE2b-256 180ca301455fac7fccc86a6231aea45e671c2bbdb0f7758c2c87e8abd13fd66e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8521f216d368b5d68671ace4ef302b529d9ac4520d74e2651327a52235ebdbba
MD5 0a2fb1d6889de8bf04ba3f86d10256fc
BLAKE2b-256 fccdf7f5ca0a8723c782cbe39f4143e569e28b20d42c284cb9f19eb1ec0d9599

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 548.4 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b20e70f118667ec3a31ff98fc940d49d8c355638471b365149e5d982a5720a4f
MD5 77ed8411d6127f72e06f6168a9d44b6b
BLAKE2b-256 b66f25076f688a5efba34c7cf8d4a33179f38394d99bf6c2246a256b7fc66c16

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a1b5020e46c1e25b1ca973791c3f4708765f7a8470ea3ad1a32962750dc262d0
MD5 bb15dacaf9eaa654bbcdad775fe4c54d
BLAKE2b-256 abb010ac01a9984915de0b49c2b6d984e91f36251157eb63502d879bdcc0bbf0

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 766596a30811f8ab29eda8121191d33a83608166d6d745d8537624a92d4f06b4
MD5 e76cf28f143f9b24564932e11be06895
BLAKE2b-256 bc7767c30ae7113a2fe74df7c61071a08d5d3bfc674c439c4c2336cbf8a4c2df

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 96369eb7ebcca9f047b33d08fd91e52839891f2076527bb0889e4e7538f6779f
MD5 ce4e94f25a9abb4c825f31d6f091d65a
BLAKE2b-256 daaf83a3446a4130a82715af13a234b3446e7dd23acdb9cbbcc77739921427b4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 591.5 kB
  • Tags: CPython 3.7m, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.13

File hashes

Hashes for tfa_nightly-0.17.0.dev20220310092416-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 02284884706580b08c6d6438cf991b4c3d954187dce172dd881b8d8a41220eb8
MD5 4c1ba1253d3a5cbf7b6153f582ce2af4
BLAKE2b-256 3e50556c29047925530edf9c2ad3bb41ecf6d2a1b915e5b186c1f36c3b4a75ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page