Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.6.0.dev20191001-cp37-cp37m-manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.6.0.dev20191001-cp37-cp37m-macosx_10_13_x86_64.whl (435.5 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.6.0.dev20191001-cp36-cp36m-manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.6.0.dev20191001-cp36-cp36m-macosx_10_13_x86_64.whl (435.5 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.6.0.dev20191001-cp35-cp35m-manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.6.0.dev20191001-cp35-cp35m-macosx_10_13_x86_64.whl (435.5 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

tfa_nightly-0.6.0.dev20191001-cp27-cp27mu-manylinux2010_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

tfa_nightly-0.6.0.dev20191001-cp27-cp27m-macosx_10_13_x86_64.whl (435.5 kB view details)

Uploaded CPython 2.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.6.0.dev20191001-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 309b01b4993256eda35e23ea931ed768614c0f63028cc48b68533e2c129c15e8
MD5 7bb94aa7e30a1d1369c4b4242d5f9769
BLAKE2b-256 56bc4b6e7a4c0a9f62933f28223ea5e1033d48d28db56027b91349194ca32993

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 679af376e737c4215de791cf2434bab82bd8e082869c8690fd5f5b1b287fc096
MD5 46b72b21a3ab3016164f5c39eb95d36d
BLAKE2b-256 b9f16b32073a16142e9df90a233f1a2808cfe883a45dead60a14fd0218e1e6be

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.6.0.dev20191001-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7636bde1c72ce35fe7037ea41f3817debbd1033bc8e8987276a6da781fa1093a
MD5 dc45a7f67c479b3f66ba48418cd74a20
BLAKE2b-256 52714aab56f2c88bff778540a19ec1bfc3a5b77eb4c397b166ae8a04629d42cf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 168a5113e32cead0832e8fb50a6e90acbcf605d9181859301587037d833fb13b
MD5 f8574af80a035519bbcdb7771b282b0e
BLAKE2b-256 64c05e4786139eda6be186b4bb2be06bb8ff820dfbd48849418e6dc891622bb4

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.6.0.dev20191001-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 43c2649f3d3d726aebfaa93fc107b0826ce80ab4941ea501e095f6b216d8dcf6
MD5 689b73accb0544cdb98eab04d0813eaf
BLAKE2b-256 b86dca619ef62a11fb5e9270d5b11078a7ef25f4696db7c160f2ae970086bc79

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b586a8698a28297e7b1d0c10d73246c905b1877efa3653eaac0d160b85de5a85
MD5 d4a11a9e09033bdbac651c268af106c1
BLAKE2b-256 11abe65a75463d71e793c8527758a7d14eecd0e0f7d560eda13e54fbcbe0d490

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c249c3a22a1b0e20a57d4ea632adf7b42fa11e9320d048c01752514fcd3b6596
MD5 c32e0dd28865b7ff48abad010439b688
BLAKE2b-256 e1bead317235870e1e2aba294c113d13b4da0306889b8423d1ec1c935fcd3354

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.6.0.dev20191001-cp27-cp27m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.6.0.dev20191001-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7605dd8723321c01dbb6580cb18a54bfdc36ffaace808a0b86bcad4e05978d01
MD5 1422c591ac7254a9573c9361831784f3
BLAKE2b-256 7f5c97b2ec5cd162de3715f410225de88af532a1b52604f4a8369c7cf53905fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page