Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.7.0.dev20191009-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191009-cp37-cp37m-macosx_10_13_x86_64.whl (452.8 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191009-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191009-cp36-cp36m-macosx_10_13_x86_64.whl (452.8 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191009-cp35-cp35m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191009-cp35-cp35m-macosx_10_13_x86_64.whl (452.8 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191009-cp27-cp27mu-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191009-cp27-cp27m-macosx_10_13_x86_64.whl (452.8 kB view details)

Uploaded CPython 2.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191009-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ea3d6a0c44305b57dd816906a2d15416f2ed65bb11c7edfbbc8faedeb2ae1d7f
MD5 91c2347ac64ace6a36153b98044b6cb6
BLAKE2b-256 0eebbe46006f63fc3b7548c12fab0bc78a40448e3a60839d598f01a858d3821e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f3d872e5a92329f0263bdd323f6058cb42a536236f844560326ff24350638aad
MD5 23d64ca8cd48bab87cfb6a533d52e8db
BLAKE2b-256 1e066906637f1c8fcd02d8704699b0e9b13647b215726fd43ec097b96b1aa368

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191009-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fcb2a5091a37ceee7fd113ad4080d05d9df0b00a7a69520ccc390ec235301276
MD5 4518db2d3c7fb9b379c2a51494ea5e0f
BLAKE2b-256 f79350b7ef373065cd348cfe9527b9f9192de9c5df9fb3c4ac1c9f051276cc4d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c3d4607236d1f454742416c95fa11dd43b9eb2e7edf39c0910fba6d32fac2155
MD5 4242888651c3681468b3e3e23a5426ae
BLAKE2b-256 63740b0a372895d378f8ad6961292253d7af55d2fef5201328a256e33726e20e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191009-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 378a57a5110b2d52a703015f55b00ebeb4a6ff001c685833ec10d1dc3c200db9
MD5 364dd47826c4409d878f53cd8c615c35
BLAKE2b-256 8a4153f83215c84735e8838c5d59e8d081b967290d98c2f2282154c8f6be927e

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a63b859f1a054a0cab8df664e9b8eb7ea19a817a5f6ff1684c32d2a0bbbff065
MD5 9bf9058ce8978d94646d982df15d6c18
BLAKE2b-256 f39d343f6df7a55bb4284ebff487a9e8940062a88c593f6b8c32b594587003fb

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 035052939f81d6a3468e080961ad847a35f3bbe677916dbc71d251a9a6a5c7e6
MD5 7b32048c3bef797373ef2f65f681bc1d
BLAKE2b-256 798343d12f3f5ac4b935d8706cf03b3ef4f5fab75784644df5cea555f4529f1c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191009-cp27-cp27m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191009-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 35f3904c1339472e3404cf436d4901cb325984716df76b06cddf36ac525dcad5
MD5 c6590df6ea6411ef75a89f99844f855f
BLAKE2b-256 cf7795f02ed6709e0a53201c62b628ae6253b6adaf99265d6c5bdef25cd489cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page