Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.7.0.dev20191031-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191031-cp37-cp37m-macosx_10_13_x86_64.whl (489.6 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191031-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191031-cp36-cp36m-macosx_10_13_x86_64.whl (489.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191031-cp35-cp35m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191031-cp35-cp35m-macosx_10_13_x86_64.whl (489.6 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191031-cp27-cp27mu-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191031-cp27-cp27m-macosx_10_13_x86_64.whl (489.5 kB view details)

Uploaded CPython 2.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191031-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0001d678d5f49c2bb69babc82547edf8cfc94f6ed67f04e7a7f918dba5bf1217
MD5 954b861c4506d183d1a4057c0fbb9f76
BLAKE2b-256 68da28f8a1564f34b6906f33a1c8c1fe38a9af8fecc4f8e1dd87ddc18441b1ab

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 321a6ef9b4aa50e38a2100c9f9f635e1b8d4f5a7f0b9c7552e5414c69abd0e0d
MD5 9c2296e40908f05c01aad541185e51d3
BLAKE2b-256 1275365bbdfc3001f28f2235b021683c18d454bf838f856956f9ebcc4073cad0

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191031-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5b152fcd31c58ba3699622325ab40e1dd6b98d6c8bba0ba887e8c77b4634279e
MD5 51bc81f78677ac430a1da6c913ce557c
BLAKE2b-256 2dfff014cfa8be1bf5c69d314a0a640339ed9a45ebc47a424c5e216d1cb79dfe

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 66ae704a67b68409876843ba3bc657a247f7439becdddc21eaef90c1cfa1cc80
MD5 8abee560ad7bd9d8baacb14c765a1057
BLAKE2b-256 9f01d2a9122cafb6bc2595629b79dc829102eefaebb7fd3bb2377414ec42e470

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191031-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 265f247a8c650f5e9ea43099cefca50e96142bf2c4522b1af3c4ba5d754edfa7
MD5 4f50c5debbbef7c05f3285487bfa12f8
BLAKE2b-256 fd767fc017f7286a4a57b5e11f24ee501a56b74afa01057aa0fd4c54e83964d5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2fe3828777caf894a7648f6ea0d5019a037ef3f78e43fae36f05fa1019c72d4a
MD5 4be4bcc18c9fcbc15250461999e1913e
BLAKE2b-256 38e429d018321ec21765726e7b3b86d4b305a71d094c414fa2375df21259e03f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8891babd023edf1215cddfd14bc7828d5439ca724d892d34afb5c89fd5041d1e
MD5 69b1115622fe9f6ff5bc8c6175208b06
BLAKE2b-256 0b8c6b3b03e016351e21026f3f27a2f9ad7d679f06fcd6dc4566850e975df356

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191031-cp27-cp27m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191031-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7f80e8dbbfda5f8031058fbb6719eac76bdb80f8ad5f82e60a9e4981af6e0cbd
MD5 8cb3b70af994573998c67e579a3b5b46
BLAKE2b-256 1f5f0aa716f5f4fb5908fb9b06f76fe607ecbb3c82695f6d7d2557dd68bf219a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page