Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.7.0.dev20191111-cp37-cp37m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191111-cp37-cp37m-macosx_10_13_x86_64.whl (489.5 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191111-cp36-cp36m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191111-cp36-cp36m-macosx_10_13_x86_64.whl (489.5 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191111-cp35-cp35m-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191111-cp35-cp35m-macosx_10_13_x86_64.whl (489.5 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20191111-cp27-cp27mu-manylinux2010_x86_64.whl (1.9 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

tfa_nightly-0.7.0.dev20191111-cp27-cp27m-macosx_10_13_x86_64.whl (489.5 kB view details)

Uploaded CPython 2.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191111-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5dfef80a0e329b49cf1a94796544e7ee293fa8e77a154c5182a29b1734fc1d3f
MD5 12e257733ce07c0b0d17b24c11abbe81
BLAKE2b-256 c84d2fffcc4ab636d375c6b4f0e4b88828102a122f478cfccd42a2a753ce2184

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 68c21d60fe99c89f2f7c5904d11c3a0bd9af3adb1056ae0de2d34e0ac0833da7
MD5 064357323e8a748ba5889c4833a8ec06
BLAKE2b-256 047af34eada9527ff6957f38766ae9c164cd2cc25c5d6ce07a3243b8fc5035bd

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191111-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 579926a067c1a05b3a5cbf49ce0db454656269e9ddbcc69f95ebfc67852bd4d3
MD5 4a0a818db460573414fb45151fad5cf2
BLAKE2b-256 88f45c3e0da86b5d8b4604490f14c74a431c0c48067a259697ade634fcfe1d4d

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c255d596d63c1da0eb9f02dbd8836c71b89c74ba9f6b3aa6033e30819943a987
MD5 a682a135e5107f19d0198c100ad4967b
BLAKE2b-256 fa78ab151cabe29f538abcedbbf0302bcf8b4deb187c89852eb8bdbc13dce176

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20191111-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/2.7.12

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7642f9eee14988cd7f7b5f8b0a55e0c31ca0f72c3fb529c3ec422c6fee58ab7b
MD5 c4c38d9eb0127f13019bb09558cb0797
BLAKE2b-256 4f3433db31f072432469624972102f5a195515892af2812a429864883a0c8edf

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aa8a690183bc00b428aa7f1f43bacad3e258c9cba0a7bc981029c714a7aab5ee
MD5 45515b58e2f8538d611a3cfd06529242
BLAKE2b-256 e8ee804cd56b0715079558549474d59c286b2e67cee7861fa3994ea47b2e5bd5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 676093b91eee3f588ae94c4918c365cee34572b13f9673ed677a56bc04d572bc
MD5 e3093a3cf01a027c870d06fc4ae56a84
BLAKE2b-256 baeec00c3be269a1df5ba64e809ce4b039d78cad90448c6b94d7180ec63b1535

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20191111-cp27-cp27m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20191111-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 deb53fd2bd48144a705bb4fa3bb273bfba616182854e7cf54b87f474192b337f
MD5 a8ffdc4102c2f3532cbc59900431123c
BLAKE2b-256 287d676466434952696f82362ad3215bf1b0c78388fad32f283f9e9e295aea89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page