Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.7.0.dev20200103-cp37-cp37m-win_amd64.whl (887.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.7.0.dev20200103-cp37-cp37m-macosx_10_13_x86_64.whl (547.1 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20200103-cp36-cp36m-win_amd64.whl (887.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.7.0.dev20200103-cp36-cp36m-macosx_10_13_x86_64.whl (547.1 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20200103-cp35-cp35m-win_amd64.whl (887.4 kB view details)

Uploaded CPython 3.5m Windows x86-64

tfa_nightly-0.7.0.dev20200103-cp35-cp35m-macosx_10_13_x86_64.whl (547.1 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

tfa_nightly-0.7.0.dev20200103-cp27-cp27m-macosx_10_13_x86_64.whl (547.0 kB view details)

Uploaded CPython 2.7m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20200103-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 887.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0e2bd9257693fd5ac96656f92e2b67c4850d797f75155b4304d740cc271a3b7d
MD5 a8603e9d25277176bf85b18cbe1cd9e6
BLAKE2b-256 67befb96d2296af405a4fb626540a9bdc4e917f6ecd4536d221890a6255239b8

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f527c16a6c33f68bb0b0af7ef0de0b2b2f09476e9a9d501ae601157fd152a092
MD5 c53f33d3c0d6ca3f4868a3cd79a27dc2
BLAKE2b-256 eb0936956ed0b97ef4336900763bee025b22ea49450928d5a61c0ed422006878

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20200103-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 887.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 798fd216e318464e03f0884196c073968ee287195c5742e0ea32a894753a7727
MD5 ad9d707cc5a7b70e6e3f606f319b8012
BLAKE2b-256 5f1a40641a6bef26db2374ec928039748121860c16774c49be8c081fef67e97f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ef9e4a04e6fc2609480d843f103eb68c1153cbba25ae5c7aa967eec839989c3c
MD5 93d0953e9868bd31846dbcc2baf33a23
BLAKE2b-256 25b63663f84487e49f6050cd8729bd99edb15a6651223c831ebffbc9892afcf7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.7.0.dev20200103-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 887.4 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6f0479c25dd146f0a1b9213e24a8e7d5057fc79add0172f9f0d0bca51066ee1c
MD5 3b4152b83e9bd716610a779d123dadf5
BLAKE2b-256 d6b5507f59840c621133cf8d0756bfaee68e11c246ab44dd1cb7d362bf9f63d3

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0722ebebd0cb4be4d7fa66ae01a80c1bdefa115aff934cbccdc9de06612d7da0
MD5 bc6028772c4abe11d33290bc4df0d8dd
BLAKE2b-256 45a4e6a007cf9334701f28f0f5752198017c21779ef1ffc38f6047cc942f5714

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.7.0.dev20200103-cp27-cp27m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.7.0.dev20200103-cp27-cp27m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5645a1da3346599f2e9f5a08a3b4116640ff9ec528698ccda488cd1d24948f92
MD5 f1939aeb536bfe27db4e2a90b86a6e37
BLAKE2b-256 487f9e100ad72e1689bce6b923f642eefa16c192bbb78b789be897fc346b0736

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page