Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.9.0.dev20200215-cp37-cp37m-win_amd64.whl (839.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.9.0.dev20200215-cp37-cp37m-manylinux2010_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.9.0.dev20200215-cp37-cp37m-macosx_10_15_x86_64.whl (547.7 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

tfa_nightly-0.9.0.dev20200215-cp36-cp36m-win_amd64.whl (839.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.9.0.dev20200215-cp36-cp36m-manylinux2010_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.9.0.dev20200215-cp36-cp36m-macosx_10_15_x86_64.whl (547.7 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

tfa_nightly-0.9.0.dev20200215-cp35-cp35m-win_amd64.whl (839.3 kB view details)

Uploaded CPython 3.5m Windows x86-64

tfa_nightly-0.9.0.dev20200215-cp35-cp35m-manylinux2010_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.9.0.dev20200215-cp35-cp35m-macosx_10_15_x86_64.whl (547.7 kB view details)

Uploaded CPython 3.5m macOS 10.15+ x86-64

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.9.0.dev20200215-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 839.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 abda6236cb280c4db49596a031371cc381ad207d6a67d546f79b76bf4a4a4092
MD5 4a8415df8eab119ccfed18ea8b121c18
BLAKE2b-256 0d01e49605a57f10728f802d68afda04f7db30da581fb7a4df21eef788caca24

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ac62f41d0ff5d058b9906069ae0941a0cbf369070815208a3bd1341b18ae340e
MD5 5a1683971d911f7606d3cad84f630dcf
BLAKE2b-256 491e7be8f816a55107edc21099b0330ecae476198641c16b2b98cd52fd259172

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 59bf5596b9e5c759a7bf3cb8aafee4e43fdfe941aeeb043816fc660312fd32c3
MD5 26275bc8a5f20506fc7803dbf16ea29b
BLAKE2b-256 b82eaf04299b8b2e6e9efa097398322727a4552138ad04b6ce510d180cbdd458

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.9.0.dev20200215-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 839.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 18e0eff7cb7ba1c2e50fbe14f81f9bd36e8aca22286763db249bb9d11d42af3a
MD5 c4a5c7c1dd5a2eef9cddc0e878b2b8ef
BLAKE2b-256 0571a50237344523b0369649331a99a3cca6569c959d77f34f8726a0f8e2f48f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 efd813da9fea7814f4988e207b603379b61878efbddb5e118b62562d59dd288d
MD5 db1dff40bffd09dc040aaa8cd384bbf6
BLAKE2b-256 d83814b04709395340038d227c170fd17b9b374ab39ea3149b6e0198b6105079

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 100d7c5a8e49d98194c93eee5065ac19266ee5a2e079e65e9161b996c01cc8ba
MD5 70ebb6907f6bd22e27c39c1514707b4b
BLAKE2b-256 e848e2b9f022e27d17bcb4c5a620767e5257a6d2f38069afe1641ffe15dd9b9f

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.9.0.dev20200215-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 839.3 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 745647a80060e4aafeb0c0417f964ecbc89e1103344858030eeb84836b704f6b
MD5 76282d6cafab4c88fff2ccd511e91b4a
BLAKE2b-256 ac9a4961e148627394c40b5c47d63d9a3b74c526f4058db4a5e8eb4be8b80148

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9b57efc10f1fbd7e26ae5bac6fc27f39ec7cbd95e77d5f1ac487840965dd55f0
MD5 8a3bd45a00067dba51268c5f387c49b9
BLAKE2b-256 aadb5e7da9ee13988834bc8f854314367b6a09c02476818886da296d4a022cfe

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200215-cp35-cp35m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200215-cp35-cp35m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7768c5d3b4b65317841d7383d3820cb0fd82c7719cefea675f84b779b9c2dea1
MD5 161a467983ce81f6f1f6d26229a19e32
BLAKE2b-256 2a80329900693d8b563a37ed72e5ec5e7a6f580c0d2c956932ef4afcb087b415

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page