Skip to main content

TensorFlow Addons.

Project description

TensorFlow Addons is a repository of contributions that conform to well- established API patterns, but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tfa_nightly-0.9.0.dev20200222-cp37-cp37m-win_amd64.whl (839.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

tfa_nightly-0.9.0.dev20200222-cp37-cp37m-manylinux2010_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.9.0.dev20200222-cp37-cp37m-macosx_10_13_x86_64.whl (547.7 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

tfa_nightly-0.9.0.dev20200222-cp36-cp36m-win_amd64.whl (839.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

tfa_nightly-0.9.0.dev20200222-cp36-cp36m-manylinux2010_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.9.0.dev20200222-cp36-cp36m-macosx_10_13_x86_64.whl (547.7 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

tfa_nightly-0.9.0.dev20200222-cp35-cp35m-win_amd64.whl (839.3 kB view details)

Uploaded CPython 3.5m Windows x86-64

tfa_nightly-0.9.0.dev20200222-cp35-cp35m-manylinux2010_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

tfa_nightly-0.9.0.dev20200222-cp35-cp35m-macosx_10_13_x86_64.whl (547.7 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.9.0.dev20200222-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 839.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6a54b7ccfa3fe6fae2b820d6b86fc82f7957ef8877afd28489927f4c6bfbdf11
MD5 03297b23af334fa32b004c02a51ff11a
BLAKE2b-256 d918313221325e7916379e1df54851978f7554f6e6340130e304b78356144929

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 619c7f2c11f0a5be37e2aa9e5410b37541738a6df2dcb97a85a5775445128a6b
MD5 b92dd302843c7ad29b8a329f03322116
BLAKE2b-256 2f93617525e2f9439f908373e0807284dc1ce55001c945496657379764292634

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 875616034a018813b3390b9df8ec37bfca2257be1b2c65d2c568792e57296bdd
MD5 19680491907c974f09f561a59f40d84a
BLAKE2b-256 1ce5540fe29cd1f4c223a196e9ae44bea6803eb41a68f4f06f18591f096be3b5

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.9.0.dev20200222-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 839.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 797d275ed964880a2f4df834b788abbc080b128764d01a9fbca41cfd42222370
MD5 c0b1ddbd5d12f58c272d8b599891f212
BLAKE2b-256 c47fbb50d5f128567f0cf23f5b4260d3defbd36ad40363c7874c8aafd39c2538

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1741e79271eacb9a5aa38b6f59a5f14446f881f7618d46242a92f8613f636d6b
MD5 be5bf94e96cd37630b090ea911d71177
BLAKE2b-256 48e44a3b48017017b4ca0deb68d6afa422341b3643cac35fad3fe0c9fce8d41c

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 703dbf45c418f92d745b3f32bad16b08fa35ef57ab658ecc90ded25012e80679
MD5 ddca3c9dea84704f4fb1c4c4bdd8f39d
BLAKE2b-256 32a07f415030e0f32c00d5815e96d1aba8d9f0b9b38d09899224890a4313eb04

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: tfa_nightly-0.9.0.dev20200222-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 839.3 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 783a1d0c77c7d09fbc7e114e9d7f8ef2173219bedcafd1957a3825b532b35397
MD5 276d9a7da1023fbdf140abcc7f33f23b
BLAKE2b-256 dca97cf237234f99cbb61fd5641e47ef1e044717d768c7bc13f2269fcfdd56a7

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 588dbd0227de096aac27832a24345ac47ab415d53a36217c15c10cadf3ed11eb
MD5 5dc0d04b61a6cccc76c56240702b399d
BLAKE2b-256 579245aaf84eea9462bf6713aa5c96128640c299a0461f7406e92e17c95bbbad

See more details on using hashes here.

File details

Details for the file tfa_nightly-0.9.0.dev20200222-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for tfa_nightly-0.9.0.dev20200222-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 04de02051d520fa612b1bf29183efebc89fa467345b7098b1229efcdc865974e
MD5 c6917017c7e115e988c69d6df6c8befe
BLAKE2b-256 3214dac97a3da36579ff8d0ffb4db450a2447a267324ed0772d5c69e3e8baf82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page