TFchirp: Time Frequency Decomposition Toolbox for Chirp Signals
Project description
Time Frequency Transform for Chirp Signals
Step 1: Quadratic chirp signal
Generate a quadratic chirp signal from 10 Hz to 120 Hz in 1 second with 10,000 sampling points.
import numpy as np
import scipy
import matplotlib.pyplot as plt
# Generate a quadratic chirp signal
dt = 0.0001
rate = int(1/dt)
ts = np.linspace(0, 1, int(1/dt))
data = scipy.signal.chirp(ts, 10, 1, 120, method='quadratic')
Step 2: S Transform Spectrogram
from s import *
# Compute S Transform Spectrogram
spectrogram = sTransform(data, sample_rate=rate)
plt.imshow(abs(spectrogram), origin='lower', aspect='auto')
plt.title('Original Spectrogram')
plt.show()
Step 3: Quick recovery of full ts from S transform * 0 frequency row*
(This recovered ts is computed based on the fact that the 0 frequency row always contain the full FFT result of the ts in this program by design.)
# Quick Recovery of ts from S Transform 0 frequency row
recovered_ts = recoverS(spectrogram)
plt.plot(recovered_ts-data)
plt.title('Time Series Reconstruction Error')
plt.show()
Step 4: Recovered spectrogram:
# Compute S Transform Spectrogram on the recovered time series
recoveredSpectrogram = sTransform(recovered_ts, sample_rate=rate, frange=[0,500])
plt.imshow(abs(recoveredSpectrogram), origin='lower', aspect='auto')
plt.title('Recovered Specctrogram')
plt.show()
Step 5: The real inverse S transform
# Quick Inverse of ts from S Transform
inverse_ts, inverse_tsFFT = inverseS(spectrogram)
plt.plot(inverse_ts)
plt.plot(inverse_ts-data)
plt.title('Time Series Reconstruction Error')
plt.legend(['Recovered ts', 'Error'])
plt.show()
Step 6: Recovered spectrogram on the real inverse S transform ts
# Compute S Transform Spectrogram on the recovered time series
inverseSpectrogram = sTransform(inverse_ts, sample_rate=rate, frange=[0,500])
plt.imshow(abs(inverseSpectrogram), origin='lower', aspect='auto')
plt.title('Recovered Specctrogram')
plt.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file TFchirp-0.0.2.tar.gz
.
File metadata
- Download URL: TFchirp-0.0.2.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99a4d2499bdcebbd50ee262922d87fb0d72dfc31468e9d15d57301bd86510611 |
|
MD5 | 4c1a2a127d6a1a556f31a642c0af7f97 |
|
BLAKE2b-256 | 28207ce0396f89abb229938b904ffd66cd0880b80043182305074a72b3edeeb1 |
File details
Details for the file TFchirp-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: TFchirp-0.0.2-py3-none-any.whl
- Upload date:
- Size: 15.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | edc11c62b2b1536130271e76fe32360269a34691dcc7a811d2fd23985447c3ab |
|
MD5 | 8e8442c3e480627bcb937330b3fc1085 |
|
BLAKE2b-256 | a0862ab130d0841313fe27202bb7940d4093311e66f362c06251b2b605d84c9e |