Skip to main content

TFchirp: Time Frequency Decomposition Toolbox for Chirp Signals

Project description

PyPI version

Time Frequency Transform for Chirp Signals

Step 1: Quadratic chirp signal

Generate a quadratic chirp signal from 10 Hz to 120 Hz in 1 second with 10,000 sampling points.

import numpy as np
import scipy
import matplotlib.pyplot as plt

# Generate a quadratic chirp signal
dt = 0.0001
rate = int(1/dt)
ts = np.linspace(0, 1, int(1/dt))
data = scipy.signal.chirp(ts, 10, 1, 120, method='quadratic')

Step 2: S Transform Spectrogram

from s import *

# Compute S Transform Spectrogram
spectrogram = sTransform(data, sample_rate=rate)
plt.imshow(abs(spectrogram), origin='lower', aspect='auto')
plt.title('Original Spectrogram')
plt.show()

Original Spectrogram

Step 3: Quick recovery of full ts from S transform * 0 frequency row*

(This recovered ts is computed based on the fact that the 0 frequency row always contain the full FFT result of the ts in this program by design.)

# Quick Recovery of ts from S Transform 0 frequency row
recovered_ts = recoverS(spectrogram)
plt.plot(recovered_ts-data)
plt.title('Time Series Reconstruction Error')
plt.show()

Reconstruction Error

Step 4: Recovered spectrogram:

# Compute S Transform Spectrogram on the recovered time series
recoveredSpectrogram = sTransform(recovered_ts, sample_rate=rate, frange=[0,500])
plt.imshow(abs(recoveredSpectrogram), origin='lower', aspect='auto')
plt.title('Recovered Specctrogram')
plt.show()

Recovered

Step 5: The real inverse S transform

# Quick Inverse of ts from S Transform
inverse_ts, inverse_tsFFT = inverseS(spectrogram)
plt.plot(inverse_ts)
plt.plot(inverse_ts-data)
plt.title('Time Series Reconstruction Error')
plt.legend(['Recovered ts', 'Error'])
plt.show()

Recovered ts and Error

Step 6: Recovered spectrogram on the real inverse S transform ts

# Compute S Transform Spectrogram on the recovered time series
inverseSpectrogram = sTransform(inverse_ts, sample_rate=rate, frange=[0,500])
plt.imshow(abs(inverseSpectrogram), origin='lower', aspect='auto')
plt.title('Recovered Specctrogram')
plt.show()

Recovered Spectrogram

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

TFchirp-0.0.2.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

TFchirp-0.0.2-py3-none-any.whl (15.4 kB view details)

Uploaded Python 3

File details

Details for the file TFchirp-0.0.2.tar.gz.

File metadata

  • Download URL: TFchirp-0.0.2.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for TFchirp-0.0.2.tar.gz
Algorithm Hash digest
SHA256 99a4d2499bdcebbd50ee262922d87fb0d72dfc31468e9d15d57301bd86510611
MD5 4c1a2a127d6a1a556f31a642c0af7f97
BLAKE2b-256 28207ce0396f89abb229938b904ffd66cd0880b80043182305074a72b3edeeb1

See more details on using hashes here.

File details

Details for the file TFchirp-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: TFchirp-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 15.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.6.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for TFchirp-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 edc11c62b2b1536130271e76fe32360269a34691dcc7a811d2fd23985447c3ab
MD5 8e8442c3e480627bcb937330b3fc1085
BLAKE2b-256 a0862ab130d0841313fe27202bb7940d4093311e66f362c06251b2b605d84c9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page