Skip to main content

TensorFlow Hub module producer for text embedding lookup

Project description

tfembedhub

Convert embeddings vectors (.txt format) into TensorFlowHub embedding lookup module.

How to

  1. Save lookup keys and embeddings values in text file.

Keys should be in first column. Other columns treated as embedding values. Any space-like characters allowed as columns separator.

Non-existing keys will refer to "<UNQ>" key embeddings. You may provide embedding values for that, otherwise it will be initialized with zeros.

key1 1. 2. 3.
key2 4. 5. 6.
<UNQ> 0. -1. 0.
  1. Sonvert saved embeddings into TF Hub Module with "tfembedhub-convert" command.
tfembedhub-convert vectors.txt vectors-hub/
  1. Use embedding hub via columns in your estimator.
from tfembedhub text_embedding_column, sequence_text_embedding_column

my_words_embedding = sequence_text_embedding_column(
    key='sparse_key_from_features',
    module_spec='path/to/my/hub'
)

# Then pass my_words_embedding to estimator "columns" list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
tfembedhub-1.2.1.tar.gz (8.4 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page