Skip to main content

Online Transition-Based Feature Generation for Anomaly Detection in Concurrent Data Streams.

Project description

PyPI version

Description

The process log/event log will be used as input for the feature generator. The feature generator will generate transition matrices.

How to use

Installation

pip install tfgen    # normal install
pip install --upgrade tfgen  # update tfgen

How to use

First we need to get the observable event classes. Better save this for future use, as the change of the event classes will change the generated feature. The parameter will be an array or a list of attributes. Check release v0.2.1 for datasets we will use below.

from tfgen.observe_event_classes import get_observable_ec

data_for_ec = pd.read_csv('test_data_for_ec.csv')
ec = get_observable_ec(data_for_ec[['Flags', 'S/C']])  # Flags and S/C are the attributes

Now we can create the TFGen object. The first parameter is the list of all possible event classes. The second parameter is the window size.

from tfgen import TFGen
tfgen = TFGen(ec, window_size=500)

Now we load the data for feature generation. Each case needs to end with EOT marking, and it needs to generate be placed under each attribute. Without EOT, the TET will keep growing. Something like this:

Example of input data.

Case_ID

Flags

S/C

13

000.ACK.FIN.

C

13

000.ACK.

S

14

000.SYN.

C

13

000.ACK.RST.

S

13

EOT

EOT

14

000.ACK.SYN.

S

data_for_feature = pd.read_csv('test_data_with_eot.csv')

We can load the dataset in an offline mode, or we can load the dataset in an online streaming mode. The method for loading the dataset in offline mode is:

tfgen.load_from_dataframe(data_for_feature, case_id_col='Case_ID', attributes_cols=['Flags', 'S/C'])
output = tfgen.get_output_list()  # this will return a list of data.

Note that the output is a list (or other iterable) of dictionaries {case_id, transition_table}, case_id is from the last event and it can be used for labelling the data for supervised learning. get_output_list() can only be used in offline mode.

Use the generator as an input for the online streaming.

# replace this generator with your own generator
def replace_with_the_actual_generator():
    while True:
        for rows in data_for_feature.values:
            case_id = rows[0]
            event_attrs = rows[[2, 3]]

            yield case_id, event_attrs  # event_attr is an iterable with multiple attributes.

# Use the generator as an input for the online streaming.
tfgen.load_from_generator(replace_with_the_actual_generator)
out = tfgen.get_output_generator()  # this will return a generator as the output.

get_output_generator() can only be used with load_from_dataframe() or load_from_generator().

We can feed the data into TFGen one by one. Note that the output is not guaranteed as TFGen needs several events to initialise. Handel the exception if you want to use this method.

import queue
data_for_feature_array = data_for_feature.values
for sample in data_for_feature_array:
    case_id = sample[0]
    event_attrs = sample[[2, 3]]

    # tfgen.load_next(<you data sample>). The sample is a tuple of (case_id, event_attrs)
    # and event_attrs is an iterable with multiple attributes.
    tfgen.load_next(case_id, event_attrs)
    try:
        print(tfgen.get_output_next())
    except queue.Empty:
        continue

get_output_next() is compatible with all input methods.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfgen-0.2.5.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

tfgen-0.2.5-py3-none-any.whl (20.2 kB view details)

Uploaded Python 3

File details

Details for the file tfgen-0.2.5.tar.gz.

File metadata

  • Download URL: tfgen-0.2.5.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for tfgen-0.2.5.tar.gz
Algorithm Hash digest
SHA256 7419488bc8fe4070716822af59623a85b6536b2b1c72fbdfeab526f91c0beac7
MD5 c7b0d20a9219d3acfb9c54c8af7907b1
BLAKE2b-256 ecaca976be5c255c50114ca111f812a66cf19c2910a1b8b763ba249938227c94

See more details on using hashes here.

File details

Details for the file tfgen-0.2.5-py3-none-any.whl.

File metadata

  • Download URL: tfgen-0.2.5-py3-none-any.whl
  • Upload date:
  • Size: 20.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for tfgen-0.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e168bfe5c1fb693ac4f9064537308d0d3868de519330fecd00693ac1f3fce9c4
MD5 8a124ebdba3c7152da0931ef2aada2e0
BLAKE2b-256 511b0219c6bb29d230b315014caf3c820b6f60b41ee9d0b5a2bf0fa6019204e5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page