Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description

🤖 TFKit - Transformer Kit 🤗

NLP library for different downstream tasks, built on huggingface 🤗 project,
for developing wide variety of nlp tasks.

Feature

  • support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert
  • modularize data loading
  • easy to modify
  • special loss function for handling different cases: FocalLoss/ FocalBCELoss/ NegativeCrossEntropyLoss/ SmoothCrossEntropyLoss
  • eval on different benchmark - EM / F1 / BLEU / METEOR / ROUGE / CIDEr / Classification Report / ...
  • multi-class multi-task multi-label classifier
  • word/sentence level text generation
  • support beamsarch on decoding
  • token tagging

Package Overview

tfkit NLP library for different downstream tasks, built on huggingface project
tfkit.classifier multi-class multi-task multi-label classifier
tfkit.gen_once text generation in one time built on masklm model
tfkit.gen_onebyone text generation in one word by one word built on masklm model
tfkit.tag token tagging model
tfkit.train.py Run training
tfkit.eval.py Run evaluation

Installation

TFKit requires Python 3.6 or later.

Installing via pip

pip install tfkit

Running TFKit

Once you've installed TFKit, you can run train.py for training or eval.py for evaluation.

$ tfkit-train
Run training

arguments:
  --train       training data path       
  --valid       validation data path       
  --maxlen      maximum text length       
  --model       type of model         ['once', 'onebyone', 'classify', 'tagRow', 'tagCol']
  --config      pre-train model       bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --resume      resume from previous training
  --savedir     dir for model saving
  --worker      number of worker
  --batch       batch size
  --lr          learning rate
  --epoch       epoch rate
  --tensorboard enable tensorboard
  --cache       enable data caching
$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model       model for evaluate       
  --valid       validation data path        
  --metric      metric for evaluate         ['em', 'nlg', 'classification']
  --config      pre-train model             bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --batch       batch size
  --topk        select top k result in classification task 
  --outprint    enable printing result in console
  --beamsearch  enable beamsearch for text generation task

Dataset format

once

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

onebyone

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

classify

csv file with header
header - input,task1,task2...taskN
if some task have multiple label, use / to separate each label - label1/label2/label3
Example:

SENTENCE,LABEL,Task2
"The prospective ultrasound findings were correlated with the final diagnoses , laparotomy findings , and pathology findings .",outcome/other,1

tagRow

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"在 歐 洲 , 梵 語 的 學 術 研 究 , 由 德 國 學 者 陸 特 和 漢 斯 雷 頓 開 創 。 後 來 威 廉 · 瓊 斯 發 現 印 歐 語 系 , 也 要 歸 功 於 對 梵 語 的 研 究 。 此 外 , 梵 語 研 究 , 也 對 西 方 文 字 學 及 歷 史 語 言 學 的 發 展 , 貢 獻 不 少 。 1 7 8 6 年 2 月 2 日 , 亞 洲 協 會 在 加 爾 各 答 舉 行 。 [SEP] 陸 特 和 漢 斯 雷 頓 開 創 了 哪 一 地 區 對 梵 語 的 學 術 研 究 ?",O A A O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

tagCol

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

別 O
只 O
能 R
想 O
自 O
己 O
, O
想 M
你 M
周 O
圍 O
的 O
人 O
。 O

Project details


Release history Release notifications | RSS feed

This version

0.0.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.0.4.tar.gz (18.6 kB view details)

Uploaded Source

Built Distribution

tfkit-0.0.4-py3-none-any.whl (29.5 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.0.4.tar.gz.

File metadata

  • Download URL: tfkit-0.0.4.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.0.4.tar.gz
Algorithm Hash digest
SHA256 e48a280eb1e73750e769b67903095edbb71ee1ad625c62a8056ab377c86cada2
MD5 f9534815cfd910b4ec5acfc1cca77975
BLAKE2b-256 fe87a088279dff73eb724c587c9f7b8f6bae7711e9814ab775731269d32721df

See more details on using hashes here.

File details

Details for the file tfkit-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 29.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 454ffaa9a00394da2d318227c2a96f5f658afa53dbbe05c23d4a15d117f69fcb
MD5 0652eb8577cb5f9c1b7bb15a95d004df
BLAKE2b-256 0bb69bb35bc96c4f91f93762553b869fbb4be3cdc400267027638491b813fcdc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page