Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description

🤖 TFKit - Transformer Kit 🤗

NLP library for different downstream tasks, built on huggingface 🤗 project,
for developing wide variety of nlp tasks.

Feature

  • support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert
  • modularize data loading
  • easy to modify
  • special loss function for handling different cases: FocalLoss/ FocalBCELoss/ NegativeCrossEntropyLoss/ SmoothCrossEntropyLoss
  • eval on different benchmark - EM / F1 / BLEU / METEOR / ROUGE / CIDEr / Classification Report / ...
  • multi-class multi-task multi-label classifier
  • word/sentence level text generation
  • support beamsarch on decoding
  • token tagging

Package Overview

tfkit NLP library for different downstream tasks, built on huggingface project
tfkit.classifier multi-class multi-task multi-label classifier
tfkit.gen_once text generation in one time built on masklm model
tfkit.gen_onebyone text generation in one word by one word built on masklm model
tfkit.tag token tagging model
tfkit.train.py Run training
tfkit.eval.py Run evaluation

Installation

TFKit requires Python 3.6 or later.

Installing via pip

pip install tfkit

Running TFKit

Once you've installed TFKit, you can run train.py for training or eval.py for evaluation.

$ tfkit-train
Run training

arguments:
  --train       training data path       
  --valid       validation data path       
  --maxlen      maximum text length       
  --model       type of model         ['once', 'onebyone', 'classify', 'tagRow', 'tagCol']
  --config      pre-train model       bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --resume      resume from previous training
  --savedir     dir for model saving
  --worker      number of worker
  --batch       batch size
  --lr          learning rate
  --epoch       epoch rate
  --tensorboard enable tensorboard
  --cache       enable data caching
$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model       model for evaluate       
  --valid       validation data path        
  --metric      metric for evaluate         ['em', 'nlg', 'classification']
  --config      pre-train model             bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --batch       batch size
  --topk        select top k result in classification task 
  --outprint    enable printing result in console
  --beamsearch  enable beamsearch for text generation task

Dataset format

once

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

onebyone

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

classify

csv file with header
header - input,task1,task2...taskN
if some task have multiple label, use / to separate each label - label1/label2/label3
Example:

SENTENCE,LABEL,Task2
"The prospective ultrasound findings were correlated with the final diagnoses , laparotomy findings , and pathology findings .",outcome/other,1

tagRow

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"在 歐 洲 , 梵 語 的 學 術 研 究 , 由 德 國 學 者 陸 特 和 漢 斯 雷 頓 開 創 。 後 來 威 廉 · 瓊 斯 發 現 印 歐 語 系 , 也 要 歸 功 於 對 梵 語 的 研 究 。 此 外 , 梵 語 研 究 , 也 對 西 方 文 字 學 及 歷 史 語 言 學 的 發 展 , 貢 獻 不 少 。 1 7 8 6 年 2 月 2 日 , 亞 洲 協 會 在 加 爾 各 答 舉 行 。 [SEP] 陸 特 和 漢 斯 雷 頓 開 創 了 哪 一 地 區 對 梵 語 的 學 術 研 究 ?",O A A O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

tagCol

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

別 O
只 O
能 R
想 O
自 O
己 O
, O
想 M
你 M
周 O
圍 O
的 O
人 O
。 O

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.0.8.tar.gz (19.0 kB view details)

Uploaded Source

Built Distribution

tfkit-0.0.8-py3-none-any.whl (29.8 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.0.8.tar.gz.

File metadata

  • Download URL: tfkit-0.0.8.tar.gz
  • Upload date:
  • Size: 19.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.0.8.tar.gz
Algorithm Hash digest
SHA256 9c2f146451fcf7295da29b3a9574ec69044ff1a27421f0fa54a1e14df628696a
MD5 7b4dc693906c7f7f548735b43fa84698
BLAKE2b-256 852176ba205dfcfca974cf9aa3e99c23c38dc6a55b9138e4a8f15c4ee85e25bd

See more details on using hashes here.

File details

Details for the file tfkit-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 29.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 0e5d3aa29f832808b164fd797a27c3f859996c70c2588fb40f3edf03fc83384c
MD5 ed4bfad008d9d403d043d64ad41cbe30
BLAKE2b-256 401c7945c3ff6c190985829166a47798a741f75776dce2880c6bea1fd4626e56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page