Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description

🤖 TFKit - Transformer Kit 🤗

NLP library for different downstream tasks, built on huggingface 🤗 project,
for developing wide variety of nlp tasks.

Read this in other languages: 正體中文(施工中👷).

DEMO

Distilbert NER model

three line code train and host NER model Colab

nlprep --dataset clner --task tagRow --outdir ./clner_row --util s2t 
tfkit-train --batch 10 --epoch 3 --lr 5e-6 --train ./clner_row/train --valid ./clner_row/test --maxlen 512 --model tagRow --config distilbert-base-multilingual-cased 
nlp2go --model ./checkpoints/3.pt --predictor biotag --cli     

albert QA model

three line code train and host QA model Colab

nlprep --dataset drcdqa --task qa --outdir ./drcdqa/
tfkit-train --maxlen 512 --savedir ./drcd_qa_model/ --train ./drcdqa/train --valid ./drcdqa/test --model qa --config voidful/albert_chinese_small  --cache
nlp2go --model ./drcd_qa_model/3.pt --cli --predictor qa

Feature

  • Model list: support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert
  • NLPrep: create a data preprocessing library on many task
  • nlp2go: create model hosting library for demo
  • modularize data loading
  • easy to modify
  • special loss function for handling different cases: FocalLoss/ FocalBCELoss/ NegativeCrossEntropyLoss/ SmoothCrossEntropyLoss
  • eval on different benchmark - EM / F1 / BLEU / METEOR / ROUGE / CIDEr / Classification Report / ...
  • multi-class multi-task multi-label classifier
  • word/sentence level text generation
  • support beamsarch on decoding
  • token tagging

Flow Overview

nlp kit flow

Package Overview

tfkit NLP library for different downstream tasks, built on huggingface project
tfkit.classifier multi-class multi-task multi-label classifier
tfkit.gen_once text generation in one time built on masklm model
tfkit.gen_onebyone text generation in one word by one word built on masklm model
tfkit.tag token tagging model
tfkit.qa qa model predicting start and end position
tfkit.train.py Run training
tfkit.eval.py Run evaluation

Installation

TFKit requires Python 3.6 or later.

Installing via pip

pip install tfkit

Running TFKit

Once you've installed TFKit, you can run train.py for training or eval.py for evaluation.

$ tfkit-train
Run training

arguments:
  --train       training data path       
  --valid       validation data path       
  --maxlen      maximum text length       
  --model       type of model         ['once', 'onebyone', 'classify', 'tagRow', 'tagCol','qa']
  --config      pre-train model       bert-base-multilingual-cased... etc (you can find one on https://huggingface.co/models)

optional arguments:
  -h, --help    show this help message and exit
  --resume      resume from previous training
  --savedir     dir for model saving
  --worker      number of worker
  --batch       batch size
  --lr          learning rate
  --epoch       epoch rate
  --tensorboard enable tensorboard
  --cache       enable data caching
$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model       model for evaluate       
  --valid       validation data path        
  --metric      metric for evaluate         ['em', 'nlg', 'classification']
  --config      pre-train model             bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --batch       batch size
  --topk        select top k result in classification task 
  --outprint    enable printing result in console
  --beamsearch  enable beamsearch for text generation task

Dataset format

once

example file
csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

onebyone

example file
csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

qa

example file
csv file with 3 row - input, start_pos, end_pos
each token separate by space
no header needed
Example:

"在 歐 洲 , 梵 語 的 學 術 研 究 , 由 德 國 學 者 陸 特 和 漢 斯 雷 頓 開 創 。 後 來 威 廉 · 瓊 斯 發 現 印 歐 語 系 , 也 要 歸 功 於 對 梵 語 的 研 究 。 此 外 , 梵 語 研 究 , 也 對 西 方 文 字 學 及 歷 史 語 言 學 的 發 展 , 貢 獻 不 少 。 1 7 8 6 年 2 月 2 日 , 亞 洲 協 會 在 加 爾 各 答 舉 行 。 會 中 , 威 廉 · 瓊 斯 發 表 了 下 面 這 段 著 名 的 言 論 : 「 梵 語 儘 管 非 常 古 老 , 構 造 卻 精 妙 絕 倫 : 比 希 臘 語 還 完 美 , 比 拉 丁 語 還 豐 富 , 精 緻 之 處 同 時 勝 過 此 兩 者 , 但 在 動 詞 詞 根 和 語 法 形 式 上 , 又 跟 此 兩 者 無 比 相 似 , 不 可 能 是 巧 合 的 結 果 。 這 三 種 語 言 太 相 似 了 , 使 任 何 同 時 稽 考 三 者 的 語 文 學 家 都 不 得 不 相 信 三 者 同 出 一 源 , 出 自 一 種 可 能 已 經 消 逝 的 語 言 。 基 於 相 似 的 原 因 , 儘 管 缺 少 同 樣 有 力 的 證 據 , 我 們 可 以 推 想 哥 德 語 和 凱 爾 特 語 , 雖 然 混 入 了 迥 然 不 同 的 語 彙 , 也 與 梵 語 有 著 相 同 的 起 源 ; 而 古 波 斯 語 可 能 也 是 這 一 語 系 的 子 裔 。 」 [Question] 印 歐 語 系 因 為 哪 一 門 語 言 而 被 發 現 ?",47,49

classify

example file
csv file with header
header - input,task1,task2...taskN
if some task have multiple label, use / to separate each label - label1/label2/label3
Example:

SENTENCE,LABEL,Task2
"The prospective ultrasound findings were correlated with the final diagnoses , laparotomy findings , and pathology findings .",outcome/other,1

tagRow

example file
csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"在 歐 洲 , 梵 語 的 學 術 研 究 , 由 德 國 學 者 陸 特 和 漢 斯 雷 頓 開 創 。 後 來 威 廉 · 瓊 斯 發 現 印 歐 語 系 , 也 要 歸 功 於 對 梵 語 的 研 究 。 此 外 , 梵 語 研 究 , 也 對 西 方 文 字 學 及 歷 史 語 言 學 的 發 展 , 貢 獻 不 少 。 1 7 8 6 年 2 月 2 日 , 亞 洲 協 會 在 加 爾 各 答 舉 行 。 [SEP] 陸 特 和 漢 斯 雷 頓 開 創 了 哪 一 地 區 對 梵 語 的 學 術 研 究 ?",O A A O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

tagCol

example file
csv file with 2 row - input, target
each token separate by space
no header needed
Example:

別 O
只 O
能 R
想 O
自 O
己 O
, O
想 M
你 M
周 O
圍 O
的 O
人 O
。 O

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.1.21.tar.gz (24.6 kB view details)

Uploaded Source

Built Distribution

tfkit-0.1.21-py3-none-any.whl (37.7 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.1.21.tar.gz.

File metadata

  • Download URL: tfkit-0.1.21.tar.gz
  • Upload date:
  • Size: 24.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.1.21.tar.gz
Algorithm Hash digest
SHA256 8c41a1609fa6772c9791381b503e73e5241f68abeba91556befedea7f69854ed
MD5 73cd6ab0440217f90677535ab573d231
BLAKE2b-256 4f7849f77143fe445ebe0f80a5c05e58277ca822c18ea922fe5954dba80a3b44

See more details on using hashes here.

File details

Details for the file tfkit-0.1.21-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.1.21-py3-none-any.whl
  • Upload date:
  • Size: 37.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.1.21-py3-none-any.whl
Algorithm Hash digest
SHA256 538634f63220b673464f8e5c4b36295286914128a8baa0ba9e4c2a2108484c7b
MD5 8dc7025eaf9ab13e004b1a1fbcd5aa8e
BLAKE2b-256 b600ec2c6a2e7413ddd418e424ee8162a63ba2e4b62b5f558b92793203034369

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page