Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description

🤖 TFKit - Transformer Kit 🤗

NLP library for different downstream tasks, built on huggingface 🤗 project,
for developing wide variety of nlp tasks.

Feature

  • support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert
  • modularize data loading
  • easy to modify
  • special loss function for handling different cases: FocalLoss/ FocalBCELoss/ NegativeCrossEntropyLoss/ SmoothCrossEntropyLoss
  • eval on different benchmark - EM / F1 / BLEU / METEOR / ROUGE / CIDEr / Classification Report / ...
  • multi-class multi-task multi-label classifier
  • word/sentence level text generation
  • support beamsarch on decoding
  • token tagging

Package Overview

tfkit NLP library for different downstream tasks, built on huggingface project
tfkit.classifier multi-class multi-task multi-label classifier
tfkit.gen_once text generation in one time built on masklm model
tfkit.gen_onebyone text generation in one word by one word built on masklm model
tfkit.tag token tagging model
tfkit.train.py Run training
tfkit.eval.py Run evaluation

Installation

TFKit requires Python 3.6 or later.

Installing via pip

pip install tfkit

Running TFKit

Once you've installed TFKit, you can run train.py for training or eval.py for evaluation.

$ tfkit-train
Run training

arguments:
  --train       training data path       
  --valid       validation data path       
  --maxlen      maximum text length       
  --model       type of model         ['once', 'onebyone', 'classify', 'tagRow', 'tagCol']
  --config      pre-train model       bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --resume      resume from previous training
  --savedir     dir for model saving
  --worker      number of worker
  --batch       batch size
  --lr          learning rate
  --epoch       epoch rate
  --tensorboard enable tensorboard
  --cache       enable data caching
$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model       model for evaluate       
  --valid       validation data path        
  --metric      metric for evaluate         ['em', 'nlg', 'classification']
  --config      pre-train model             bert-base-multilingual-cased

optional arguments:
  -h, --help    show this help message and exit
  --batch       batch size
  --topk        select top k result in classification task 
  --outprint    enable printing result in console
  --beamsearch  enable beamsearch for text generation task

Dataset format

once

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

onebyone

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"i go to school by bus","我 坐 巴 士 上 學"

classify

csv file with header
header - input,task1,task2...taskN
if some task have multiple label, use / to separate each label - label1/label2/label3
Example:

SENTENCE,LABEL,Task2
"The prospective ultrasound findings were correlated with the final diagnoses , laparotomy findings , and pathology findings .",outcome/other,1

tagRow

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

"在 歐 洲 , 梵 語 的 學 術 研 究 , 由 德 國 學 者 陸 特 和 漢 斯 雷 頓 開 創 。 後 來 威 廉 · 瓊 斯 發 現 印 歐 語 系 , 也 要 歸 功 於 對 梵 語 的 研 究 。 此 外 , 梵 語 研 究 , 也 對 西 方 文 字 學 及 歷 史 語 言 學 的 發 展 , 貢 獻 不 少 。 1 7 8 6 年 2 月 2 日 , 亞 洲 協 會 在 加 爾 各 答 舉 行 。 [SEP] 陸 特 和 漢 斯 雷 頓 開 創 了 哪 一 地 區 對 梵 語 的 學 術 研 究 ?",O A A O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

tagCol

csv file with 2 row - input, target
each token separate by space
no header needed
Example:

別 O
只 O
能 R
想 O
自 O
己 O
, O
想 M
你 M
周 O
圍 O
的 O
人 O
。 O

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.1.3.tar.gz (19.4 kB view details)

Uploaded Source

Built Distribution

tfkit-0.1.3-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.1.3.tar.gz.

File metadata

  • Download URL: tfkit-0.1.3.tar.gz
  • Upload date:
  • Size: 19.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.1.3.tar.gz
Algorithm Hash digest
SHA256 2078e067817feb48a48d2ceecf19db5c8659cb510174692c424b253bf842bd85
MD5 587a054e1d540a5fc4fc15e73c71f064
BLAKE2b-256 4628f41334106d54c72556025bf49288930ab5d2efa01849c50f8891d47552f9

See more details on using hashes here.

File details

Details for the file tfkit-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7818787686e2d2d5868921b70610e68a973144ae33a3bd4415ba875416704ec8
MD5 9c9c78582123922d91650ec60bcf471b
BLAKE2b-256 8e841558c0f2d7a43e201f808db66f6ff7af336f167440290eee2aaa7518bb6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page