Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description




PyPI Download Build Last Commit

TFKit lets everyone make use of transformer architecture on many tasks and models in small change of config.
At the same time, it can do multi-task multi-model learning, and can introduce its own data sets and tasks through simple modifications.

Feature

  • One-click replacement of different pre-trained models
  • Support multi-model and multi-task
  • Classifier with multiple labels and multiple classifications
  • Unify input formats for different tasks
  • Separation of data reading and model architecture
  • Support various loss function and indicators

Supplement

  • Model list: Support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert/...
  • NLPrep: download and preprocessing data in one line
  • nlp2go: create demo api as quickly as possible.

Quick Start

Installing via pip

pip install tfkit

Running TFKit to train a ner model

install nlprep and nlp2go

pip install nlprep  nlp2go -U

download dataset using nlprep

nlprep --dataset tag_clner  --outdir ./clner_row --util s2t

train model with albert

tfkit-train --batch 20 \
--epoch 5 \
--lr 5e-5 \
--train ./clner_row/train.csv \
--test ./clner_row/test.csv \
--maxlen 512 \
--model tagRow \
--savedir ./albert_ner \
--config voidful/albert_chinese_small

eval model

tfkit-eval --model ./albert_ner/3.pt --valid ./clner_row/validation.csv --metric clas

result

Task : default report 
TASK:  default 0
                precision    recall  f1-score   support

    B_Abstract       0.00      0.00      0.00         1
    B_Location       1.00      1.00      1.00         1
      B_Metric       1.00      1.00      1.00         1
B_Organization       0.00      0.00      0.00         1
      B_Person       1.00      1.00      1.00         1
    B_Physical       0.00      0.00      0.00         1
       B_Thing       1.00      1.00      1.00         1
        B_Time       1.00      1.00      1.00         1
    I_Abstract       1.00      1.00      1.00         1
    I_Location       1.00      1.00      1.00         1
      I_Metric       1.00      1.00      1.00         1
I_Organization       0.00      0.00      0.00         1
      I_Person       1.00      1.00      1.00         1
    I_Physical       0.00      0.00      0.00         1
       I_Thing       1.00      1.00      1.00         1
        I_Time       1.00      1.00      1.00         1
             O       1.00      1.00      1.00         1

     micro avg       1.00      0.71      0.83        17
     macro avg       0.71      0.71      0.71        17
  weighted avg       0.71      0.71      0.71        17
   samples avg       1.00      0.71      0.83        17

host prediction service

nlp2go --model ./albert_ner/3.pt --api_path ner

You can also try tfkit in Google Colab: Google Colab

Overview

Train

$ tfkit-train
Run training

arguments:
  --train TRAIN [TRAIN ...]     train dataset path
  --test TEST [TEST ...]        test dataset path
  --config CONFIG               distilbert-base-multilingual-cased/bert-base-multilingual-cased/voidful/albert_chinese_small
  --model {once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} [{once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} ...]
                                model task
  --savedir SAVEDIR     model saving dir, default /checkpoints
optional arguments:
  -h, --help            show this help message and exit
  --batch BATCH         batch size, default 20
  --lr LR [LR ...]      learning rate, default 5e-5
  --epoch EPOCH         epoch, default 10
  --maxlen MAXLEN       max tokenized sequence length, default 368
  --lossdrop            loss dropping for text generation
  --tag TAG [TAG ...]   tag to identity task in multi-task
  --seed SEED           random seed, default 609
  --worker WORKER       number of worker on pre-processing, default 8
  --grad_accum          gradient accumulation, default 1
  --tensorboard         Turn on tensorboard graphing
  --resume RESUME       resume training
  --cache               cache training data

Eval

$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model MODEL             model path
  --metric {emf1,nlg,clas}  evaluate metric
  --valid VALID             evaluate data path

optional arguments:
  -h, --help            show this help message and exit
  --print               print each pair of evaluate data
  --enable_arg_panel    enable panel to input argument

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.3.48.tar.gz (32.2 kB view details)

Uploaded Source

Built Distributions

tfkit-0.3.48-py3.7.egg (115.7 kB view details)

Uploaded Source

tfkit-0.3.48-py3-none-any.whl (51.1 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.3.48.tar.gz.

File metadata

  • Download URL: tfkit-0.3.48.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.3.48.tar.gz
Algorithm Hash digest
SHA256 d0b76c49a11dfc399e9e76555faf5c69bf510939dee2545aa54857540b171541
MD5 23c0cef79677b3c916f4db0795ac0660
BLAKE2b-256 963e63d12ac58e5872f54d39c24ffe6301f80b02afaeaecfbfc8796b2561d560

See more details on using hashes here.

File details

Details for the file tfkit-0.3.48-py3.7.egg.

File metadata

  • Download URL: tfkit-0.3.48-py3.7.egg
  • Upload date:
  • Size: 115.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.3.48-py3.7.egg
Algorithm Hash digest
SHA256 9c8a8f2df0a6e2130bebc2e9688b6017b6d401b9f9103c58ca694625b9d9be6a
MD5 404125f3fa6e247f789253ad3d3685ca
BLAKE2b-256 0364da5e84b22de9d3c919c63167d23d0e1b13348c5594e247f832387704c37b

See more details on using hashes here.

File details

Details for the file tfkit-0.3.48-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.3.48-py3-none-any.whl
  • Upload date:
  • Size: 51.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.3.48-py3-none-any.whl
Algorithm Hash digest
SHA256 a49f16725777a005973f9373c84c40e830440edae6e84d931b24693f19715a26
MD5 2ef7edfae30d61f96a25fcdb583f1290
BLAKE2b-256 e556f77aba992ed5619a459d4978c5dae3ec212804beaac235fa8de935378cbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page