Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description




PyPI Download Build Last Commit CodeFactor

TFKit lets everyone make use of transformer architecture on many tasks and models in small change of config.
At the same time, it can do multi-task multi-model learning, and can introduce its own data sets and tasks through simple modifications.

Feature

  • One-click replacement of different pre-trained models
  • Support multi-model and multi-task
  • Classifier with multiple labels and multiple classifications
  • Unify input formats for different tasks
  • Separation of data reading and model architecture
  • Support various loss function and indicators

Supplement

  • Model list: Support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert/...
  • NLPrep: download and preprocessing data in one line
  • nlp2go: create demo api as quickly as possible.

Documentation

Learn more from the docs.

Quick Start

Installing via pip

pip install tfkit

Running TFKit to train a ner model

install nlprep and nlp2go

pip install nlprep  nlp2go -U

download dataset using nlprep

nlprep --dataset tag_clner  --outdir ./clner_row --util s2t

train model with albert

tfkit-train --batch 20 \
--epoch 5 \
--lr 5e-5 \
--train ./clner_row/train.csv \
--test ./clner_row/test.csv \
--maxlen 512 \
--model tagRow \
--savedir ./albert_ner \
--config voidful/albert_chinese_small

eval model

tfkit-eval --model ./albert_ner/3.pt --valid ./clner_row/validation.csv --metric clas

result

Task : default report 
TASK:  default 0
                precision    recall  f1-score   support

    B_Abstract       0.00      0.00      0.00         1
    B_Location       1.00      1.00      1.00         1
      B_Metric       1.00      1.00      1.00         1
B_Organization       0.00      0.00      0.00         1
      B_Person       1.00      1.00      1.00         1
    B_Physical       0.00      0.00      0.00         1
       B_Thing       1.00      1.00      1.00         1
        B_Time       1.00      1.00      1.00         1
    I_Abstract       1.00      1.00      1.00         1
    I_Location       1.00      1.00      1.00         1
      I_Metric       1.00      1.00      1.00         1
I_Organization       0.00      0.00      0.00         1
      I_Person       1.00      1.00      1.00         1
    I_Physical       0.00      0.00      0.00         1
       I_Thing       1.00      1.00      1.00         1
        I_Time       1.00      1.00      1.00         1
             O       1.00      1.00      1.00         1

     micro avg       1.00      0.71      0.83        17
     macro avg       0.71      0.71      0.71        17
  weighted avg       0.71      0.71      0.71        17
   samples avg       1.00      0.71      0.83        17

host prediction service

nlp2go --model ./albert_ner/3.pt --api_path ner

You can also try tfkit in Google Colab: Google Colab

Overview

Train

$ tfkit-train
Run training

arguments:
  --train TRAIN [TRAIN ...]     train dataset path
  --test TEST [TEST ...]        test dataset path
  --config CONFIG               distilbert-base-multilingual-cased/bert-base-multilingual-cased/voidful/albert_chinese_small
  --model {once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} [{once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} ...]
                                model task
  --savedir SAVEDIR     model saving dir, default /checkpoints
optional arguments:
  -h, --help            show this help message and exit
  --batch BATCH         batch size, default 20
  --lr LR [LR ...]      learning rate, default 5e-5
  --epoch EPOCH         epoch, default 10
  --maxlen MAXLEN       max tokenized sequence length, default 368
  --lossdrop            loss dropping for text generation
  --tag TAG [TAG ...]   tag to identity task in multi-task
  --seed SEED           random seed, default 609
  --worker WORKER       number of worker on pre-processing, default 8
  --grad_accum          gradient accumulation, default 1
  --tensorboard         Turn on tensorboard graphing
  --resume RESUME       resume training
  --cache               cache training data

Eval

$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model MODEL             model path
  --metric {emf1,nlg,clas}  evaluate metric
  --valid VALID             evaluate data path

optional arguments:
  -h, --help            show this help message and exit
  --print               print each pair of evaluate data
  --enable_arg_panel    enable panel to input argument

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.3.66.tar.gz (213.0 kB view details)

Uploaded Source

Built Distributions

tfkit-0.3.66-py3.7.egg (117.3 kB view details)

Uploaded Source

tfkit-0.3.66-py3-none-any.whl (52.7 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.3.66.tar.gz.

File metadata

  • Download URL: tfkit-0.3.66.tar.gz
  • Upload date:
  • Size: 213.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.3.66.tar.gz
Algorithm Hash digest
SHA256 a98620a79328c5d7355c06f0aecc44ce2aa1af1acab47059467c5654ef5eb85c
MD5 02c1ed2bfa407481b02c57ce99179331
BLAKE2b-256 de2eeb5fff2b3086c390591e34f54b6779b505382f09045a6500c00cae0a8221

See more details on using hashes here.

File details

Details for the file tfkit-0.3.66-py3.7.egg.

File metadata

  • Download URL: tfkit-0.3.66-py3.7.egg
  • Upload date:
  • Size: 117.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.3.66-py3.7.egg
Algorithm Hash digest
SHA256 7d3e92f80a8f6c94429b18ad97f26b071cfa2f2aba713d7e9b35a439f36d0f4e
MD5 9af550fb3c31f3a3b5a1c29ac0b75b37
BLAKE2b-256 77170da543f8e741e96bc3060b147cabe9b16290fb4c86866d7611ea109c9edf

See more details on using hashes here.

File details

Details for the file tfkit-0.3.66-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.3.66-py3-none-any.whl
  • Upload date:
  • Size: 52.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.4

File hashes

Hashes for tfkit-0.3.66-py3-none-any.whl
Algorithm Hash digest
SHA256 73c93cc3cef2a6d29b973cf206635f3a457b40bddff82783b3ff2df05ac237ad
MD5 36ad72d921b614690dcc921f31fbe389
BLAKE2b-256 b7f0e538b009b339d651fd8a00ce9d42ceb1e49071807a1fb8a0f856219c97dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page