Skip to main content

Transformers kit - NLP library for different downstream tasks, built on huggingface project

Project description




PyPI Download Build Last Commit CodeFactor Visitor

TFKit lets everyone make use of transformer architecture on many tasks and models in small change of config.
At the same time, it can do multi-task multi-model learning, and can introduce its own data sets and tasks through simple modifications.

Feature

  • One-click replacement of different pre-trained models
  • Support multi-model and multi-task
  • Classifier with multiple labels and multiple classifications
  • Unify input formats for different tasks
  • Separation of data reading and model architecture
  • Support various loss function and indicators

Supplement

  • Model list: Support Bert/GPT/GPT2/XLM/XLNet/RoBERTa/CTRL/ALBert/...
  • NLPrep: download and preprocessing data in one line
  • nlp2go: create demo api as quickly as possible.

Documentation

Learn more from the docs.

Quick Start

Installing via pip

pip install tfkit

Running TFKit to train a ner model

install nlprep and nlp2go

pip install nlprep  nlp2go -U

download dataset using nlprep

nlprep --dataset tag_clner  --outdir ./clner_row --util s2t

train model with albert

tfkit-train --batch 20 \
--epoch 5 \
--lr 5e-5 \
--train ./clner_row/clner-train.csv \
--test ./clner_row/clner-test.csv \
--maxlen 512 \
--model tagRow \
--savedir ./albert_ner \
--config voidful/albert_chinese_small

eval model

tfkit-eval --model ./albert_ner/3.pt --valid ./clner_row/validation.csv --metric clas

result

Task : default report 
TASK:  default 0
                precision    recall  f1-score   support

    B_Abstract       0.00      0.00      0.00         1
    B_Location       1.00      1.00      1.00         1
      B_Metric       1.00      1.00      1.00         1
B_Organization       0.00      0.00      0.00         1
      B_Person       1.00      1.00      1.00         1
    B_Physical       0.00      0.00      0.00         1
       B_Thing       1.00      1.00      1.00         1
        B_Time       1.00      1.00      1.00         1
    I_Abstract       1.00      1.00      1.00         1
    I_Location       1.00      1.00      1.00         1
      I_Metric       1.00      1.00      1.00         1
I_Organization       0.00      0.00      0.00         1
      I_Person       1.00      1.00      1.00         1
    I_Physical       0.00      0.00      0.00         1
       I_Thing       1.00      1.00      1.00         1
        I_Time       1.00      1.00      1.00         1
             O       1.00      1.00      1.00         1

     micro avg       1.00      0.71      0.83        17
     macro avg       0.71      0.71      0.71        17
  weighted avg       0.71      0.71      0.71        17
   samples avg       1.00      0.71      0.83        17

host prediction service

nlp2go --model ./albert_ner/3.pt --api_path ner

You can also try tfkit in Google Colab: Google Colab

Overview

Train

$ tfkit-train
Run training

arguments:
  --train TRAIN [TRAIN ...]     train dataset path
  --test TEST [TEST ...]        test dataset path
  --config CONFIG               distilbert-base-multilingual-cased/bert-base-multilingual-cased/voidful/albert_chinese_small
  --model {once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} [{once,twice,onebyone,clas,tagRow,tagCol,qa,onebyone-neg,onebyone-pos,onebyone-both} ...]
                                model task
  --savedir SAVEDIR     model saving dir, default /checkpoints
optional arguments:
  -h, --help            show this help message and exit
  --batch BATCH         batch size, default 20
  --lr LR [LR ...]      learning rate, default 5e-5
  --epoch EPOCH         epoch, default 10
  --maxlen MAXLEN       max tokenized sequence length, default 368
  --lossdrop            loss dropping for text generation
  --tag TAG [TAG ...]   tag to identity task in multi-task
  --seed SEED           random seed, default 609
  --worker WORKER       number of worker on pre-processing, default 8
  --grad_accum          gradient accumulation, default 1
  --tensorboard         Turn on tensorboard graphing
  --resume RESUME       resume training
  --cache               cache training data

Eval

$ tfkit-eval
Run evaluation on different benchmark
arguments:
  --model MODEL             model path
  --metric {emf1,nlg,clas}  evaluate metric
  --valid VALID             evaluate data path

optional arguments:
  -h, --help            show this help message and exit
  --print               print each pair of evaluate data
  --enable_arg_panel    enable panel to input argument

Contributing

Thanks for your interest.There are many ways to contribute to this project. Get started here.

License PyPI - License

Icons reference

Icons modify from Freepik from www.flaticon.com
Icons modify from Nikita Golubev from www.flaticon.com

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tfkit-0.5.8.tar.gz (219.9 kB view details)

Uploaded Source

Built Distributions

tfkit-0.5.8-py3.7.egg (135.3 kB view details)

Uploaded Source

tfkit-0.5.8-py3-none-any.whl (62.5 kB view details)

Uploaded Python 3

File details

Details for the file tfkit-0.5.8.tar.gz.

File metadata

  • Download URL: tfkit-0.5.8.tar.gz
  • Upload date:
  • Size: 219.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.5.8.tar.gz
Algorithm Hash digest
SHA256 b3147c6f6974ed8fd75ec0e4cb95f7fd0948e0d8fed47ef669337ec17f097761
MD5 e123ec0a8a8859ad2a2fd7c3ee0cdda5
BLAKE2b-256 e2c2a35b0ddbdbe04a4773f3cc3394b633b0d6eb3c5cf83ac656fc234bb9b637

See more details on using hashes here.

File details

Details for the file tfkit-0.5.8-py3.7.egg.

File metadata

  • Download URL: tfkit-0.5.8-py3.7.egg
  • Upload date:
  • Size: 135.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.5.8-py3.7.egg
Algorithm Hash digest
SHA256 6efe07c49c50658dcacb776ddaf48264ed821551849b0fd1204a2e0c1185f40e
MD5 77815c79f6242569e00f0aa053755427
BLAKE2b-256 39c3378dddb395fb06d5f11bfbcda3410676e4a8cc211d95bf2b26e96cfd277f

See more details on using hashes here.

File details

Details for the file tfkit-0.5.8-py3-none-any.whl.

File metadata

  • Download URL: tfkit-0.5.8-py3-none-any.whl
  • Upload date:
  • Size: 62.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for tfkit-0.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 69db9af544df9b79ce742af63fb3e5dc9a4a5777a45a871cc27c952fca4640c9
MD5 97257b222e872faa1340c0a24121cf65
BLAKE2b-256 8f9faeb9c9485a157184da40bebd27d2532e48d2130f8d8227ec6129c248d568

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page